A low temperature, single step, pulsed d.c magnetron sputtering technique for copper indium gallium diselenide photovoltaic absorber layers

2013 ◽  
Vol 1538 ◽  
pp. 45-50 ◽  
Author(s):  
Sreejith Karthikeyan ◽  
Kushagra Nagaich ◽  
Arthur E Hill ◽  
Richard D Pilkington ◽  
Stephen A Campbell

ABSTRACTPulsed d.c Magnetron Sputtering (PdcMS) has been investigated for the first time to study the deposition of copper indium gallium diselenide (CIGS) thin films for photovoltaic applications. Pulsing the d.c. in the mid frequency region enhances the ion intensity and enables long term arc-free operation for the deposition of high resistivity materials such as CIGS. It has the potential to produce films with good crystallinity, even at low substrate temperatures. However, the technique has not generally been applied to the absorber layers for photovoltaic applications. The growth of stoichiometric p-type CIGS with the desired electro-optical properties has always been a challenge, particularly over large areas, and has involved multiple steps often including a dangerous selenization process to compensate for selenium vacancies. The films deposited by PdcMS had a nearly ideal composition (Cu0.75In0.88Ga0.12Se2) as deposited at substrate temperatures ranging from no intentional heating to 400 °C. The films were found to be very dense and pin-hole free. The stoichiometry was independent of heating during the deposition, but the grain size increased with substrate temperature, reaching about ∼ 150 nm at 400 °C. Hot probe analysis showed that the layers were p-type. The physical, structural and optical properties of these films were analyzed using SEM, EDX, XRD, and UV-VIS-NIR spectroscopy. The material characteristics suggest that these films can be used for solar cell applications. This novel ion enhanced single step low temperature deposition technique may have a critical role in flexible and tandem solar cell applications compared to other conventional techniques which require higher temperatures.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. Ouédraogo ◽  
F. Zougmoré ◽  
J. M. Ndjaka

We used a one-dimensional simulation program Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D) to investigate Copper-Indium-Gallium-Diselenide- (CIGS-) based solar cells properties. Starting with a conventional ZnO-B/i-ZnO/CdS/CIGS structure, we simulated the parameters of current-voltage characteristics and showed how the absorber layer thickness, hole density, and band gap influence the short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency of solar cell. Our simulation results showed that all electrical parameters are greatly affected by the absorber thickness (w) below 1000 nm, due to the increase of back-contact recombination and very poor absorption. Increasing hole density (p) or absorber band gap (Eg) improvesVocand leads to high efficiency, which equals value of 16.1% whenp= 1016 cm−3andEg=1.2 eV. In order to reduce back-contact recombination, the effect of a very thin layer with high band gap inserted near the back contact and acting as electrons reflector, the so-called back-electron reflector (EBR), has been investigated. The performances of the solar cells are significantly improved, when ultrathin absorbers (w< 500 nm) are used; the corresponding gain ofJscdue to the EBR is 3 mA/cm2. Our results are in good agreement with those reported in the literature from experiments.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Chung Ping Liu ◽  
Ming Wei Chang ◽  
Chuan Lung Chuang ◽  
Nien Po Chen

Copper-indium-gallium-diselenide (CIGS) thin films were fabricated using precursor nanoparticle ink and sintering technology. The precursor was a Cu-poor quaternary compound with constituent ratios ofCu/(In+Ga)=0.603,Ga/(In+Ga)=0.674, andSe/(Cu+In+Ga)=1.036. Cu-poor CIGS nanoparticles of chalcopyrite for solar cells were successfully synthesized using a relatively simple and convenient elemental solvothermal route. After a fixed reaction time of 36 h at 180°C, CIGS nanocrystals with diameters in the range of 20–70 nm were observed. The nanoparticle ink was fabricated by mixing CIGS nanoparticles, a solvent, and an organic polymer. Analytical results reveal that the Cu-poor CIGS absorption layer prepared from a nanoparticle-ink polymer by sintering has a chalcopyrite structure and a favorable composition. For this kind of sample, its mole ratio of Cu : In : Ga : Se is equal to 0.617 : 0.410 : 0.510 : 2.464 and related ratios ofGa/(In+Ga)andCu/(In+Ga)are 0.554 and 0.671, respectively. Under the condition of standard air mass 1.5 global illumination, the conversion efficiency of the solar cell fabricated by this kind of sample is 4.05%.


Author(s):  
Isabela C. B. ◽  
Ricardo Lameirinhas ◽  
Carlos A. F. Fernandes ◽  
João Paulo N. Torres

Thin-film modules are emerging in the photovoltaic market, due to their competitive cost with the traditional crystalline silicon modules. The thin-film cells CuIn(1-x)Ga(x)Se2 (Copper Indium Gallium Selenide - CIGS) are...


Optik ◽  
2020 ◽  
pp. 165987
Author(s):  
Waqas Farooq ◽  
Thamraa Alshahrani ◽  
Syed Asfandyar Ali Kazmi ◽  
Javed Iqbal ◽  
Hassnain Abbas Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document