adsorbent layer
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 85 (1) ◽  
Author(s):  
Elena Belyanovskaya ◽  
Roman Lytovchenko ◽  
Kostyantyn Mikhaylovich Sukhyy ◽  
Yana Oleksandrivna Serhiienko ◽  
Mikhaylo Porfyryevich Sukhyy ◽  
...  

Thermal conditions of adsorptive heat storage device operating in open-mode were considered when discharged. The main operating parameters affecting the final temperature of airflow which supplied to ventilated premises are determined on the example of heat storage device based on composite ‘silica gel – sodium sulphate’. The main factors which determine a final airflow temperature are confirmed to be initial values of temperature, absolute humidity and speed of airflow which fanned to the adsorbent layer. Algorithm of calculating the operational parameters of adsorptive heat storage device has been further developed.  Proposed algorithm involves calculation of diffusion coefficient, mass transfer coefficient, final absolute humidity of airflow, volume of air which passed through adsorbent layer, adsorption, specific adsorption heat and final airflow temperature, then useful heat, heat inputs for operating heat storage device and its efficiency factor are estimated. The adequacy of the proposed algorithm has been confirmed according with experimental data for operating of open mode adsorptive heat storage device. Curves final temperature of inflowing air vs. time of discharge of heat storage device are stated to depend on characteristics of airflow which fanned to the adsorbent layer such as temperature, speed and initial absolute humidity. When these parameters increased, time to achieve plateau, i.e. maximal values of final inflowing air temperature decrease. The dependence of initial values of temperature, absolute humidity, speed of humid airflow and final airflow temperature is shown. Maximal temperatures of at most 65 – 80 ºC are stated at the initial temperatures and absolute humidity of initial airflow within the ranges of 20 – 30 ºC and 0.03 – 0.04 kg/m3, respectively. The results of the present study can be used for the development of energy-efficient systems and devices for air-conditioning in habitual inner space and warehouses.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6011
Author(s):  
Maciej Jan Rybicki ◽  
Anna Klimek-Turek ◽  
Tadeusz Henryk Dzido

Coccidiostats are drugs used against coccidiosis, a common disease among breeding animals. Their widespread application leads to the appearance of their residues in food, which is potentially harmful for human health and life. The European Union has established limits of concentrations of these drugs in premixtures and food. Nowadays, there are many methods for monitoring coccidiostats’ presence in market products, but their frequent weakness is sample preparation. Solvent Front Position Extraction is a planar chromatography-based sample preparation method that allows for effective assay of samples with coccidiostats when coupled with LC-MS/MS. The purpose of this research was to find common conditions for the effective isolation of eight coccidiostats from biological sample components with both lower and higher retention than the substances of interest. The acquired results were used for effective isolation of monensin and salinomycin from the premixture samples and allowed for their quantitative determination. The application of a semi-automatic device for the development of chromatograms positively impacted the results, confirming the effectiveness of the method for determining coccidiostats in biological samples.


2020 ◽  
Vol 84 (1) ◽  
pp. 98-103
Author(s):  
Elena Belyanovskaya ◽  
Roman Lytovchenko ◽  
Kostyantyn Sukhyy ◽  
Mikhaylo Sukhyy ◽  
Mykhailo Gubynskyi ◽  
...  

The performance of the adsorptive heat-moisture regenerators based on the composite materials ‘silica gel - sodium acetate’ and ‘silica gel – sodium sulphate’ have been studied. The mathematical model and algorithm for determining the basic operating parameters of adsorptive regenerator in the housing and communal services sector have been further developed. The proposed algorithm which involves calculating the air volume passed through the adsorbent layer, the final absolute humidity of air near the outlet from the regenerator, the adsorption and the heat of adsorption  during inflow and outflow, the final temperature of the external cold air, the air temperature after mixing the cold external air and the internal warm air in the room near the warm end of the regenerator during inflow, the air temperature after mixing of the cold external air and the warm exhaust air from the premise near the cold end of regenerator during outflow, determining the temperature and moisture efficiency factors has been completed by computing the Reynolds criterion of the adsorbent layer, the coefficient of the hydraulic resistance, the pressure loss, the consumed power of ventilator, summarized adsorption and time to achieve maximal adsorption . The adequacy of suggested mathematical model is confirmed by sufficient correlation of experimental data and calculation results with the proposed algorithm. The performance of adsorptive regenerators based on the adsorbents ‘silica gel – CH3COONa’ and ‘silica gel – Na2SO4’ has been simulated in the conditions of the conventional ventilation system of living quarters. The efficiency of adsorptive regenerators has been compared when ‘silica gel – CH3COONa’ and ‘silica gel – Na2SO4’ used. The correlation of design and efficiency of adsorptive regenerators is shown.


2020 ◽  
Vol 31 (46) ◽  
pp. 465405 ◽  
Author(s):  
Masoud Aliyariyan ◽  
Davood Fathi ◽  
Mehdi Eskandari ◽  
Alireza Tooghi

Sign in / Sign up

Export Citation Format

Share Document