Studies of Corrosion of Al Thin Films using Liquid Cell Transmission Electron Microscopy

2013 ◽  
Vol 1525 ◽  
Author(s):  
See Wee Chee ◽  
Frances M. Ross ◽  
David Duquette ◽  
Robert Hull

ABSTRACTA fundamental understanding of the processes that occur during early stages of corrosion is traditionally limited by the dearth of techniques that probe the liquid-solid interface with both high spatial resolution and microstructural detail such as grain size and orientation. Here, we demonstrate that with a microfluidic liquid flow cell holder, we can track the progress of corrosion in situ in Al thin films with transmission electron microscopy (TEM). To mitigate the loss of resolution caused by imaging through liquid, we developed a method in which the liquid is temporarily de-wetted from the entire windowed area by switching the liquid stream from pure water to a mixture of ethanol and water. In the de-wetted region, we then collected images of the film microstructure with high spatial resolution over regular intervals while maintaining a low electron flux over the imaged area to minimize beam-induced effects. For as-deposited films, we find that the corrosion progresses in a fractal manner, consistent with reported behavior for films studied in water with low iron and chloride concentrations. For films that were subjected to rapid thermal annealing, we observe a higher density of pitting events, which we attribute to defects created by thermal stress in the oxide film. Furthermore, we observe that the pits can form at multiple locations in a single grain and are not confined to grain boundaries.

Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Microscopy ◽  
2020 ◽  
Author(s):  
Xiaoguang Li ◽  
Kazutaka Mitsuishi ◽  
Masaki Takeguchi

Abstract Liquid cell transmission electron microscopy (LCTEM) enables imaging of dynamic processes in liquid with high spatial and temporal resolution. The widely used liquid cell (LC) consists of two stacking microchips with a thin wet sample sandwiched between them. The vertically overlapped electron-transparent membrane windows on the microchips provide passage for the electron beam. However, microchips with imprecise dimensions usually cause poor alignment of the windows and difficulty in acquiring high-quality images. In this study, we developed a new and efficient microchip fabrication process for LCTEM with a large viewing area (180 µm × 40 µm) and evaluated the resultant LC. The new positioning reference marks on the surface of the Si wafer dramatically improve the precision of dicing the wafer, making it possible to accurately align the windows on two stacking microchips. The precise alignment led to a liquid thickness of 125.6 nm close to the edge of the viewing area. The performance of our LC was demonstrated by in situ transmission electron microscopy imaging of the dynamic motions of 2-nm Pt particles. This versatile and cost-effective microchip production method can be used to fabricate other types of microchips for in situ electron microscopy.


Author(s):  
Chunlang Gao ◽  
Chunqiang Zhuang ◽  
Yuanli Li ◽  
Heyang Qi ◽  
Ge Chen ◽  
...  

In this study, we employed in-situ liquid cell transmission electron microscopy (LC-TEM) to carry out the new design strategy of precisely regulating the microstructure of large-sized cocatalysts for highly efficient...


ACS Nano ◽  
2020 ◽  
Vol 14 (7) ◽  
pp. 8735-8743 ◽  
Author(s):  
Karthikeyan Gnanasekaran ◽  
Kristina M. Vailonis ◽  
David M. Jenkins ◽  
Nathan C. Gianneschi

2020 ◽  
Vol 26 (S2) ◽  
pp. 1700-1702
Author(s):  
Nuria Bagues ◽  
Binbin Wang ◽  
Tao Liu ◽  
Camelia Selcu ◽  
Stephen Boona ◽  
...  

2015 ◽  
Vol 27 (23) ◽  
pp. 8146-8152 ◽  
Author(s):  
Wen-I Liang ◽  
Xiaowei Zhang ◽  
Karen Bustillo ◽  
Chung-Hua Chiu ◽  
Wen-Wei Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document