Li Storage on TCNE and TCNE-(Doped)-Graphene Complexes: a Computational Study

2014 ◽  
Vol 1679 ◽  
Author(s):  
Yingqian Chen ◽  
Sergei Manzhos

ABSTRACTLi attachment to free tetracyanoethylene (TCNE) molecules and TCNE adsorbed on doped graphene is studied using density functional theory. While TCNE is adsorbed only weakly on ideal graphene, we identified a configuration in which TCNE is chemisorbed on Al-doped graphene via its C atom and a surface oxygen atom. Up to four Li atoms can be stored on both free and adsorbed TCNE with binding energies stronger than cohesive energy of the Li metal. TCNE immobilized on the conducting graphene-based substrate could therefore become an efficient anode material for organic Li ion batteries.

RSC Advances ◽  
2018 ◽  
Vol 8 (69) ◽  
pp. 39414-39420 ◽  
Author(s):  
Omar Allam ◽  
Byung Woo Cho ◽  
Ki Chul Kim ◽  
Seung Soon Jang

In this study, we utilize a density functional theory-machine learning framework to develop a high-throughput screening method for designing new molecular electrode materials.


2013 ◽  
Vol 1540 ◽  
Author(s):  
Fleur Legrain ◽  
Oleksandr I. Malyi ◽  
Teck L. Tan ◽  
Sergei Manzhos

ABSTRACTWe show in a theoretical density functional theory study that amorphous Si (a-Si) has more favorable energetics for Mg storage compared to crystalline Si (c-Si). Specifically, Mg and Li insertion is compared in a model a-Si simulation cell. Multiple sites for Mg insertion with a wide range of binding energies are identified. For many sites, Mg defect formation energies are negative, whereas they are positive in c-Si. Moreover, while clustering in c-Si destabilizes the insertion sites (by about 0.1/0.2 eV per atom for nearest-neighbor Li/Mg), it is found to stabilize some of the insertion sites for both Li (by up to 0.27 eV) and Mg (by up to 0.35 eV) in a-Si. This could have significant implications on the performance of Si anodes in Mg batteries.


2015 ◽  
Vol 1740 ◽  
Author(s):  
G. F. Ortiz ◽  
M C. López ◽  
M.E. Arroyo-de Dompablo ◽  
José L. Tirado

ABSTRACTThe potential ionic conductors Li2APO4 (A = Na, K) are investigated combining experiments and first principles calculations at the Density Functional Theory level. A high ionic conductivity of 6.5 x10−6 and 1.5 x10−5 S cm−1 at 25 and 70°C, respectively, is found in Nalipoite-Li2NaPO4. For this mixed phosphate the energy barriers to Li motion are calculated. The lower energy barrier (0.7 eV) implies the inter-chain diffusion of Li in the b-c plane. We predict that ionic mobility is enhanced in the isostructural Li2KPO4, with the lowest calculated energy barrier being 0.4 eV.


2020 ◽  
Vol 22 (16) ◽  
pp. 8902-8912 ◽  
Author(s):  
Xiaodong Lv ◽  
Fengyu Li ◽  
Jian Gong ◽  
Jinxing Gu ◽  
Shiru Lin ◽  
...  

By means of density functional theory computations, we explored the electrochemical performance of an FeSe monolayer as an anode material for lithium and non-lithium ion batteries (LIBs and NLIBs).


2021 ◽  
Vol 9 ◽  
Author(s):  
Drace Penley ◽  
Stephen P. Vicchio ◽  
Rachel B. Getman ◽  
Burcu Gurkan

The energetics, coordination, and Raman vibrations of Li solvates in ionic liquid (IL) electrolytes are studied with density functional theory (DFT). Li+ coordination with asymmetric anions of cyano(trifluoromethanesulfonyl)imide ([CTFSI]) and (fluorosulfonyl)(trifluoro-methanesulfonyl)imide ([FTFSI]) is examined in contrast to their symmetric analogs of bis(trifluoromethanesulfonyl)imide ([TFSI]), bis(fluorosulfonyl)imide ([FSI]), and dicyanamide ([DCA]). The dissociation energies that can be used to describe the solvation strength of Li+ are calculated on the basis of the energetics of the individual components and the Li solvate. The calculated dissociation energies are found to be similar for Li+-[FTFSI], Li+-[TFSI], and Li+-[FSI] where only Li+-O coordination exists. Increase in asymmetry and anion size by fluorination on one side of the [TFSI] anion does not result in significant differences in the dissociation energies. On the other hand, with [CTFSI], both Li+-O and Li+-N coordination are present, and the Li solvate has smaller dissociation energy than the solvation by [DCA] alone, [TFSI] alone, or a 1:1 mixture of [DCA]/[TFSI] anions. This finding suggests that the Li+ solvation can be weakened by asymmetric anions that promote competing coordination environments through enthalpic effects. Among the possible Li solvates of (Li[CTFSI]n)−(n−1), where n = 1, 2, 3, or 4, (Li[CTFSI]2)−1 is found to be the most stable with both monodentate and bidentate bonding possibilities. Based on this study, we hypothesize that the partial solvation and weakened solvation energetics by asymmetric anions may increase structural heterogeneity and fluctuations in Li solvates in IL electrolytes. These effects may further promote the Li+ hopping transport mechanism in concentrated and multicomponent IL electrolytes that is relevant to Li-ion batteries.


2020 ◽  
Author(s):  
Katrine Louise Svane ◽  
Sebastian Zimmer Lefmann ◽  
Mads Schousboe Vilmann ◽  
Jan Rossmeisl ◽  
Ivano E. Castelli

The solid-electrolyte interphase (SEI) is of crucial importance for the performance of Li-ion batteries. Here, Density Functional Theory (DFT) calculations are used to study the formation of one of the simplest and early appearing components of the SEI layer, namely LiF, which is produced by splitting HF impurities. The process is investigated on different models representing the basal and edge planes of a graphitic anode, and on covalently connected carbon nanotubes and graphene sheets, known as pillared graphene. The results show that 2 Li atoms are required to bind F in the ?initial state in order to make the reaction energetically favorable, or alternatively a H atom must be pre-adsorbed. The Li adsorption energy, and thereby the Li coverage at a given potential, varies for the diff?erent carbon structures, demonstrating that the arti?ficial nanostructure of the carbon can in?fluence the formation of the SEI.


2019 ◽  
Vol 48 (18) ◽  
pp. 6228-6235 ◽  
Author(s):  
Chun-Guang Liu ◽  
Li-Long Zhang ◽  
Xue-Mei Chen

Density functional theory calculations have been carried out to explore the catalytic performance of a series of the M1/POM (M = Fe, Co, Mn, Ru, Rh, Os, Ir, and Pt; POM = [PW12O40]3−) single-atom catalysts for CO oxidation.


Sign in / Sign up

Export Citation Format

Share Document