carbon structures
Recently Published Documents


TOTAL DOCUMENTS

473
(FIVE YEARS 123)

H-INDEX

40
(FIVE YEARS 7)

2022 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Yury S. Nechaev ◽  
Evgeny A. Denisov ◽  
Nadezhda A. Shurygina ◽  
Alisa O. Cheretaeva ◽  
Ekaterina K. Kostikova ◽  
...  

An effective methodology for the detailed analysis of thermal desorption spectra (TDS) of hydrogen in carbon structures at micro- and nanoscale was further developed and applied for a number of TDS data of one heating rate, in particular, for graphite materials irradiated with atomic hydrogen. The technique is based on a preliminary description of hydrogen desorption spectra by symmetric Gaussians with their special processing in the approximation of the first- and the second-order reactions. As a result, the activation energies and the pre-exponential factors of the rate constants of the hydrogen desorption processes are determined, analyzed and interpreted. Some final verification of the results was completed using methods of numerical simulation of thermal desorption peaks (non-Gaussians) corresponding to the first- and the second-order reactions. The main research finding of this work is a further refinement and/or disclosure of poorly studied characteristics and physics of various states of hydrogen in microscale graphite structures after irradiation with atomic hydrogen, and comparison with the related results for nanoscale carbon structures. This is important for understanding the behavior and relationship of hydrogen in a number of cases of high energy carbon-based materials and nanomaterials.


Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121917
Author(s):  
Qingqing Gan ◽  
Jiang Xu ◽  
Shoujian Peng ◽  
Fazhi Yan ◽  
Ruifang Wang ◽  
...  

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Paula Muñoz-Flores ◽  
Po S. Poon ◽  
Catherine Sepulveda ◽  
Conchi O. Ania ◽  
Juan Matos

Carbon-doped nanostructured CuMo-based photocatalysts were prepared by solvothermal synthesis. Two thermal treatments—oxidative and inert atmosphere—were used for the synthesis of the catalysts, and the influence of spherical carbon structures upon the crystalline phases on the photocatalytic activity and stability was studied. XRD showed the catalysts are nanostructured and composed by a mixture of copper (Cu, Cu2O, and CuO) and molybdenum (MoO2 and MoO3) crystalline phases. The catalysts were used for the degradation of yellow 5 under solar light. A remarkable leaching of Mo both in dark and under solar irradiation was observed and quantified. This phenomenon was responsible for the loss of photocatalytic activity for the degradation of the dye on the Mo-containing series. Conversely, the Cu-based photocatalysts were stable, with no leaching observed after 6 h irradiation and with a higher conversion of yellow 5 compared with the Mo- and CuMo series. The stability of Cu-based catalysts was attributed to a protective effect of spherical carbon structures formed during the solvothermal synthesis. Regarding the catalysts’ composition, sample Cu4-800-N2 prepared by pyrolysis exhibited up to 4.4 times higher photoactivity than that of the pristine material, which is attributed to a combined effect of an enhanced surface area and micropore volume generated during the pyrolytic treatment due to the presence of the carbon component in the catalyst. Scavenger tests have revealed that the mechanism for tartrazine degradation on irradiated Cu-based catalysts involves successive attacks of •OH radicals.


Langmuir ◽  
2021 ◽  
Author(s):  
Qinye Li ◽  
Siyao Qiu ◽  
Min Yan ◽  
Chuangwei Liu ◽  
Fengling Zhou ◽  
...  

2021 ◽  
Vol 930 (1) ◽  
pp. 012020
Author(s):  
T Setianingsih ◽  
D Purwonugroho ◽  
YP Prananto

Abstract Patchouli biomass is a potential precursor for CNS synthesis. In this research, the patchouli was pyrolyzed using the microwave. The purpose of this research is to study the effect of microwave energy and activator toward physicochemistry of CNS and composite (ZnO/CNS) and application of ZnCr2O4/CNS for the pesticide polluted surface water remediation in paddy field. In the process, the biomass was pyrolyzed at four and 8W with and without the ZnCl2 activator. The products were blended and evaporated to obtain CNS and ZnO/CNS. The products were characterized using FTIR spectrometry, XRD, and dispersion test. The composites were used to synthesize ZnCr2O4/CNS at 600W in the microwave. The composites were used for buthylphenylmethyl carbamate pesticide degradation test (BPMC) for 48 h with H2O2 oxidation. The FTIR spectra indicated better carbonization for products taken using an activator at both microwave energies. The X-ray diffractograms showed the turbostratic structure of carbon obtained at 4W pyrolysis (with activator), meanwhile 8W pyrolysis (without activator). ZnO and turbostratic carbon structures were shown by the product of 8W pyrolisis with activator. The calcined composite indicated ZnCr2O4/CNS. The degradation test showed that ZnCr2O4/CNS(8W) catalyst decreased the BMPC concentration almost three times that of the composite (4W).


2021 ◽  
Vol 22 (23) ◽  
pp. 12968
Author(s):  
Manuel A. Valdés-Madrigal ◽  
Fernando Montejo-Alvaro ◽  
Amelia S. Cernas-Ruiz ◽  
Hugo Rojas-Chávez ◽  
Ramon Román-Doval ◽  
...  

Nitrogen oxides (NOx) are among the main atmospheric pollutants; therefore, it is important to monitor and detect their presence in the atmosphere. To this end, low-dimensional carbon structures have been widely used as NOx sensors for their outstanding properties. In particular, carbon nanotubes (CNTs) have been widely used as toxic-gas sensors owing to their high specific surface area and excellent mechanical properties. Although pristine CNTs have shown promising performance for NOx detection, several strategies have been developed such as surface functionalization and defect engineering to improve the NOx sensing of pristine CNT-based sensors. Through these strategies, the sensing properties of modified CNTs toward NOx gases have been substantially improved. Therefore, in this review, we have analyzed the defect engineering and surface functionalization strategies used in the last decade to modify the sensitivity and the selectivity of CNTs to NOx. First, the different types of surface functionalization and defect engineering were reviewed. Thereafter, we analyzed experimental, theoretical, and coupled experimental–theoretical studies on CNTs modified through surface functionalization and defect engineering to improve the sensitivity and selectivity to NOx. Finally, we presented the conclusions and the future directions of modified CNTs as NOx sensors.


2021 ◽  
Vol 57 (6) ◽  
pp. 1105-1114
Author(s):  
V. Yu. Yakovlev ◽  
A. V. Shkolin ◽  
A. A. Fomkin ◽  
V. N. Gorelikov ◽  
I. E. Men’shchikov

Sign in / Sign up

Export Citation Format

Share Document