Distribution of Alloying Elements within the Constituent Phases of a C-containing γ-TiAl Based Alloy studied by Atom Probe Tomography

2014 ◽  
Vol 1760 ◽  
Author(s):  
Thomas Klein ◽  
Francisca Mendez-Martin ◽  
Michael Schachermayer ◽  
Boryana Rashkova ◽  
Helmut Clemens ◽  
...  

ABSTRACTThe distribution of alloying elements in the constituent phases of a C-containing γ-TiAl based alloy has been characterized locally by atom probe tomography. The major elements of the alloy under consideration – Ti, Al, Nb, and Mo – are distributed uniformly within each of the constituent phases. Furthermore, Mo is preferentially dissolved in the βo-phase, whereas Nb content is similar in all phases. The selected C concentration of the alloy is below the overall solubility limit as no precipitates have been observed. Therefore, C is enriched in the α2-phase, whereas the βo-phase is depleted of C. In addition, βo/γ-interfaces have been prepared by site specific sample preparation and characterized by atom probe tomography. Segregation of Mo and C into the interfaces and their close vicinity was observed.

Author(s):  
Woo Jun Kwon ◽  
Jisu Ryu ◽  
Christopher H. Kang ◽  
Michael B. Schmidt ◽  
Nicholas Croy

Abstract Focused ion beam (FIB) microscopy is an essential technique for the site-specific sample preparation of atom probe tomography (APT). The site specific APT and automated APT sample preparation by FIB have allowed increased APT sample volume. In the workflow of APT sampling, it is very critical to control depth of the sample where exact region of interest (ROI) for accurate APT analysis. Very precise depth control is required at low kV cleaning process in order to remove the damaged layer by previous high kV FIB process steps. We found low kV cleaning process with 5 kV and followed by 2kV beam conditions delivers better control to reached exact ROI on Z direction. This understanding is key to make APT sample with fully automated fashion.


2013 ◽  
Vol 132 ◽  
pp. 65-69 ◽  
Author(s):  
Ajay Kumar Kambham ◽  
Arul Kumar ◽  
Matthieu Gilbert ◽  
Wilfried Vandervorst

Author(s):  
Roger L. Alvis ◽  
Zdenek Kral ◽  
Trevan Landin ◽  
Jonathan Orsborn ◽  
Ty J. Prosa ◽  
...  

Abstract An advanced technique for site-specific Atom Probe Tomography (APT) is presented. An APT sample is prepared from a targeted semiconductor device (commercially available product based on 14nm finFET technology). Using orthogonal views of the sample in STEM while FIB milling, a viable APT sample is created with the tip of the sample positioned over the lightly-doped drain (LDD) region of a pre-defined PFET. The resulting APT sample has optimal geometry and minimal amorphization damage.


2021 ◽  
pp. 1-10
Author(s):  
Lucía Paula Campo Schneider ◽  
Jenifer Barrirero ◽  
Christoph Pauly ◽  
Agustina Guitar ◽  
Frank Mücklich

Abstract


2020 ◽  
Vol 218 ◽  
pp. 113082
Author(s):  
Cédric Barroo ◽  
Austin J. Akey ◽  
David C. Bell

2018 ◽  
Vol 24 (S1) ◽  
pp. 830-831
Author(s):  
Miki Tsuchiya ◽  
Yoshihisa Orai ◽  
Takahiro Sato ◽  
Xin Man ◽  
Junichi Katane ◽  
...  

2018 ◽  
Vol 194 ◽  
pp. 89-99 ◽  
Author(s):  
D.K. Schreiber ◽  
D.E. Perea ◽  
J.V. Ryan ◽  
J.E. Evans ◽  
J.D. Vienna

2019 ◽  
Vol 9 (13) ◽  
pp. 2721 ◽  
Author(s):  
Cédric Barroo ◽  
Austin J. Akey ◽  
David C. Bell

Atom probe tomography is a well-established analytical instrument for imaging the 3D structure and composition of materials with high mass resolution, sub-nanometer spatial resolution and ppm elemental sensitivity. Thanks to recent hardware developments in Atom Probe Tomography (APT), combined with progress on site-specific focused ion beam (FIB)-based sample preparation methods and improved data treatment software, complex materials can now be routinely investigated. From model samples to complex, usable porous structures, there is currently a growing interest in the analysis of catalytic materials. APT is able to probe the end state of atomic-scale processes, providing information needed to improve the synthesis of catalysts and to unravel structure/composition/reactivity relationships. This review focuses on the study of catalytic materials with increasing complexity (tip-sample, unsupported and supported nanoparticles, powders, self-supported catalysts and zeolites), as well as sample preparation methods developed to obtain suitable specimens for APT experiments.


2019 ◽  
Vol 92 (10) ◽  
Author(s):  
Matthew J. Lloyd ◽  
Robert G. Abernethy ◽  
David E. J. Armstrong ◽  
Paul A. J. Bagot ◽  
Michael P. Moody ◽  
...  

Abstract A viable fusion power station is reliant on the development of plasma facing materials that can withstand the combined effects of high temperature operation and high neutron doses. In this study we focus on W, the most promising candidate material. Re is the primary transmutation product and has been shown to induce embrittlement through cluster formation and precipitation below its predicted solubility limit in W. We investigate the mechanism behind this using a kinetic Monte Carlo model, implemented into Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) code and parameterised with a pairwise energy model for both interstitial and vacancy type defects. By introducing point defect sinks into our simulation cell, we observe the formation of Re rich clusters which have a concentration similar to that observed in ion irradiation experiments. We also compliment our computational work with atom probe tomography (APT) of ion implanted, model W-Re alloys. The segregation of Re to grain boundaries is observed in both our APT and KMC simulations. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document