nb content
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 70)

H-INDEX

21
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 429
Author(s):  
Yong Wang ◽  
Guangqiang Li ◽  
Chengyi Zhu ◽  
Xinbin Liu ◽  
Yulong Liu ◽  
...  

In this study, niobium was added into grain-oriented silicon steels, four Nb-bearing hot-rolled bands with Nb content range from 0–0.025 wt% were prepared and a detailed study of the micro characterization (microstructure, texture and precipitates) of hot-rolled bands was carried out by various analysis methods, such as EBSD and TEM. The results indicate that the precipitates in Nb-free steel are MnS and AlN; however, in the Nb-bearing steel they are MnS, AlN and Nb(C, N). The precipitates are finer and more dispersed in Nb-bearing steel, and a stronger pining force was obtained, which contributes to the finer microstructure and less recrystallization fractions of the hot-rolled bands. A larger volume fraction and stronger intensity of Goss texture is presented in steel with 0.025 wt% Nb due to the effective inhibiting effect. However, it has little effect on the changes of microstructure and texture when the Nb content is more than 0.009 wt%.


Author(s):  
Haixiang Chen ◽  
Kun Wang

In this work, Ni-based alloy coatings incorporated with Nb mass fractions of 0%, 3%, 6%, and 9% were successfully fabricated by laser cladding. The morphology, chemical composition, and phases of the obtained Nb-modified Ni-based coatings were characterized, and the effects of Nb contents on their electrochemical performance and immersion rates in 3.5 wt% NaCl solution were analyzed. The results show that the Ni-based coating with low Nb exhibits the most compact and refined microstructure, the best electrochemical passivation, and the lowest immersion corrosion rate of 3.30 × 10−3 mm/year. However, with increasing Nb content, the Laves phase is accumulated, and dendritic growth is promoted, which significantly decreases the coating passive stability and worsens the anti-corrosion performance.


2021 ◽  
Vol 425 ◽  
pp. 127684
Author(s):  
Xuechao Liu ◽  
Haifeng Wang ◽  
Yi Liu ◽  
Canming Wang ◽  
Qiang Song ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1139
Author(s):  
Sheng He ◽  
Ziying Li ◽  
Abdullah Al Jehani ◽  
Dongfa Guo ◽  
Zaben Harbi ◽  
...  

Due to the absence of early magma records in pegmatites, it is difficult to investigate the behavior of Nb and Ta during the transformation from magma to pegmatite melt. Zircon megacrysts in an NYF-type (Nb-Y-HREE-F) pegmatite from the Arabian Shield could be divided into three phases from core to margin. The Phase Ι zircon in the core of the zircon megacrysts had typical magma oscillatory zonation with ∑REE content from 300 to 400 ppm, Th/U ratios of less than 0.1 and Nb/Ta ratios of less than 1.0. Phase ΙΙ zircon had oscillatory zonation and was enriched with LREEs mostly with Th/U ratios of 0.1–0.2 and Nb/Ta ratios of 1.0–3.0. Phase ΙΙΙ unzoned zircon had the highest ∑REE content, from 8000 to 15,000 ppm, with Th/U ratios higher than 3.0 and Nb/Ta ratios higher than 5.0. The Hf-O isotopic composition was similar in the different phases of zircon with initial 176Hf/177Hf ratios of 0.28258–0.28277, εHf(t) values from 8.0 to 12.0 and δ18OVSMOW from +4.0‰ to +5.0‰. Zircon megacrysts in the NYF-type pegmatite from the Arabian Shield record the transformation from magma to pegmatite melt. Similar Hf-O isotopic compositions mean a closed magmatic system without contamination by external melt, rock or fluid. The proposed modeling shows that magma with low Nb and Ta concentrations and Nb/Ta ratios could evolve into residual pegmatite melt with a high Nb content and superchondrite Nb/Ta ratio during several stages of melt extraction and fractional crystallization of Ti-rich minerals, such as rutile and titanite. The Nb/Ta ratio can be used as an effective indicator of the transformation process from magma to pegmatite melt.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1626
Author(s):  
Ildiko Peter

In the present research paper, two systems based on Ti-Nb-Zr-Ta and Ti-Nb-Zr–Fe, containing non-toxic elements, are considered and investigated. The first aim of the paper is to enlarge up-to-date developed β-type Ti alloys, analyzing three different compositions, Ti-10Nb-10Zr-5Ta, Ti-20Nb-20Zr-4Ta and Ti-29.3Nb-13.6Zr-1.9Fe, in order to assess their further employment in biomedical applications. To achieve this, structural, microstructural, compositional and mechanical investigations were performed as part of this study. Based on the results obtained, the alloy with the highest Nb content seems to be the most appropriate candidate for advanced biomedical applications and, in particular, for bone substitution.


Author(s):  
James M. Borgman ◽  
Jing Wang ◽  
Lorenzo Zani ◽  
Paul P. Conway ◽  
Carmen Torres-Sanchez

AbstractIn this study, Ti-(0-30 wt.%)Nb alloys developed from elemental powders were fabricated by the Selective Laser Melting (SLM) process. Compositional homogeneity, microstructure and mechanical performance were investigated as a function of energy density. The proportion of un-melted Nb particles and isolated pore count reduced with increasing energy density, while Ti allotropic content (i.e. α’, α” and β) varied with energy density due to in-situ alloying. Increasing the Nb content led to the stabilisation of the α” and β phases. The mechanical properties were similar to those compositions manufactured using casting methods, without further post processing. The addition of 20Nb (wt.%) and using an energy density of 230 J/mm3 resulted in a Young’s Modulus of 65.2 ± 1.8 GPa, a yield strength of 769 ± 36 MPa and a microstructure of predominantly α” martensite. This strength to stiffness ratio (33% higher than Ti-10Nb and 22% higher than Ti-30Nb), is attributed to in-situ alloying that promotes solid solution strengthening and homogenisation. These alloys are strong contenders as materials suitable for implantable load-bearing orthopaedic applications.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5216 ◽  
Author(s):  
Yucheng Zhu ◽  
Jian Li ◽  
Chaolei Zhang ◽  
Wenjun Wang ◽  
Huan Wang

100Cr6 steel is one of the most widely used bearing steels and a representative of first-generation bearing steel. Many engineering applications require rolling bearings to run at a high temperature. Therefore, it is necessary to improve the high temperature properties of 100Cr6 steel. In this paper, the effect of Nb on high temperature dry tribological behavior, including worn surface and friction coefficient, was analyzed by a wear test when Nb content was 0.018% and 0.040%. The results show that the microstructure is refined gradually, the hardness is improved, and wear volume decreases by 31.8% at most with the increase of Nb content. At 50 °C, the friction coefficient of 100Cr6 steel can be reduced by adding a small amount of Nb, but this effect will be weakened if the content of Nb is too high. In addition, excess Nb increases the hard precipitation of NbC, which aggravates the abrasive wear and leads to the increase in the depth of the worn surface. At 125 °C, the effect of Nb on tribological properties is weaker. With the increase of temperature, the steel substrate softens, and the oxide particles increase, which aggravates the abrasive wear and oxidation wear and makes the wear volume increase significantly.


2021 ◽  
pp. 1-7
Author(s):  
Anna Korneva ◽  
Boris Straumal ◽  
Askar Kilmametov ◽  
Lidia Lityńska-Dobrzyńska ◽  
Robert Chulist ◽  
...  

The study of the fundamentals of the α → ω and β → ω phase transformations induced by high-pressure torsion (HPT) in Ti–Nb-based alloys is presented in the current work. Prior to HPT, three alloys with 5, 10, and 20 wt% of Nb were annealed in the temperature range of 700–540°C in order to obtain the (α + β)-phase state with a different amount of the β-phase. The samples were annealed for a long time in order to reach equilibrium Nb content in the α-solid solution. Scanning electron microscope (SEM), transmission electron microscopy, and X-ray diffraction techniques were used for the characterization of the microstructure evolution and phase transformations. HPT results in a strong grain refinement of the microstructure, a partial transformation of the α-phase into the ω-phase, and a complete β → ω phase transformation. Two kinds of the ω-phase with different chemical compositions were observed after HPT. The first one was formed from the β-phase, enriched in Nb, and the second one from the almost Nb-pure α-phase. It was found that the α → ω phase transformation depends on the Nb content in the initial α-Ti phase. The less the amount of Nb in the α-phase, the more the amount of the α-phase is transformed into the ω-phase.


Sign in / Sign up

Export Citation Format

Share Document