Structural Evolution of AuPt and AuPd Nanoparticles Fabricated by Microwave Assisted Synthesis: A Comparative Study

2015 ◽  
Vol 1802 ◽  
pp. 13-18 ◽  
Author(s):  
Tirtha Som ◽  
Robert Wendt ◽  
Simone Raoux ◽  
Jean L. Jordan-Sweet ◽  
Markus Wollgarten ◽  
...  

ABSTRACTBimetallic nanoparticles (NPs), particularly Au/Pd and Au/Pt, have attracted extensive attention due to their wide-spread application in catalysis, optoelectronics and energy recuperation.[1] Here we have attempted the fabrication of Au/Pt and Au/Pd bimetallic NPs by an energy-efficient eco-friendly microwave methodology. The microwave-assisted reactions enable considerably large product yields over conventional colloidal methods due to (a) almost two-fold increased reaction kinetics, (b) localized superheating at reaction sites and rapid rise of initial temperature.[2] Au NPs (sizes 20 ± 3 nm) are fabricated in the first step followed by the reduction of [PdCl2(NH3)2] or [K2PtCl6]in tetraethylene glycol at 180 ºC for 2 min. Controlling and understanding the atomic structure and elemental distributions of these NPs are crucial for their optimized performances. So, we address the fundamental question of the most likely arrangement of Au and Pd or Pt atoms in these bimetallic NPs prepared under similar conditions by complementary characterizations using UV-Vis spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The UV-Vis spectroscopy reveals the formation of an alloy shell. The extent of depression of the plasmon peak of Au and its blue-shift reveals substantial deposition of Pd atoms on an Au core and significant alloying in comparison to Au/Pt NPs. XRD reveals the gradual shift of the diffraction peak from the position of Au to the position of Pd or Pt with change in composition. XRD supports the formation of a thick alloy shell in these NPs. However, the TEM images reveal a very interesting result. With increase in Pt concentration, the size of the dispersed NPs decreases from 20 ± 3 nm to about 16 nm (± 1 nm) and there is evolution of a bimodal particle size distribution with small particles about 1-2 nm diameters. On the contrary, with increasing Pd concentration, the particle size of the dispersed particles increases to about 32 nm (± 1 nm). This discrepancy of particle size evolution for the two systems arises due to the differences in surface energies (Pt > Pd > Au atoms). Pt atoms tend to diffuse towards the core with the formation of Au nano-islands which eventually segregates leading to a reduction in particle size and bimodal distribution. At higher concentration of Pt, Pt and Au atoms tend to nucleate separately also contribute to the bimodal distribution. While for Au/Pd NPs, we have an Au core with an alloyed shell having higher Pd concentration. This is further supported by experimental evidence by selective etching and dissolution of Au by potassium-iodide solution. Furthermore, the Au/Pd bimetallic NPs are found to possess better catalytic activities in the reduction of 4-nitrophenol to 4-aminophenol than Au/Pt and monometallic NPs.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tsz-Lung Kwong ◽  
Ka-Fu Yung

Iron-doped zinc oxide nanostar was synthesized by the microwave-assisted surfactant-free hydrolysis method. The as-synthesized Fe-doped ZnO nanostars catalyst was fully characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), and diffuse reflectance UV-vis spectroscopy (UV-DRA). The photocatalytic activity of the photocatalyst was investigated for the photocatalytic degradation of Tropaeolin O under visible light irradiation. It is observed that the doping of Fe ions enhances the absorption of the visible light and thus the photocatalytic degradation rate of Tropaeolin O would increase. Despite the Taguchi orthogonal experimental design method, the photocatalytic conversion could be achieved at 99.8% in the Fe-doped ZnO catalyzed photodegradation reaction under the optimal reaction conditions of catalyst loading (30 mg), temperature (60°C), light distance (0 cm), initial pH (pH = 9), and irradiation time (3 h). The Fe-doped ZnO photocatalyst can also be easily recovered and directly reused for eight cycles with over 70% conversion.


2013 ◽  
Vol 1617 ◽  
pp. 151-156 ◽  
Author(s):  
Israel López ◽  
Idalia Gómez

ABSTRACTCadmium sulfide nanoparticles were synthesized by a microwave-assisted route in aqueous dispersion. The cadmium sulfide nanoparticles showed an average diameter around 5 nm and a cubic phase corresponding to hawleyite. The aqueous dispersions of the nanoparticles were characterized by UV-Vis spectroscopy, luminescence analysis, transmission electron microscopy and X-ray diffraction. The addition of sodium hydroxide solutions at different concentrations causes a red-shift in the wavelength of the first excitonic absorption peak of the cadmium sulfide nanoparticles, indicating a reduction of the band gap energy. Besides, the intensity of the luminescence of the nanoparticle dispersions was increased. However, there is a threshold concentration of the hydroxide ion above which the precipitation of the cadmium sulfide nanoparticles occurs.


RSC Advances ◽  
2019 ◽  
Vol 9 (33) ◽  
pp. 19126-19130
Author(s):  
Junxuan Xu ◽  
Hongbin Tang ◽  
Baogui Ning ◽  
Yanxi Zhao ◽  
Tao Huang

Mutually embedded Rh concave nanocubes were synthesized by reducing Rh(acac)3 with tetraethylene glycol (TEG) as both a solvent and a reducing agent under microwave irradiation for 120 s.


2019 ◽  
Vol 811 ◽  
pp. 47-54
Author(s):  
Deana Wahyuningrum ◽  
Irma Mulyani ◽  
Ray Putra Prajnamitra

Two imine derivative ligands, L1 and L2, have been synthesized using the microwave assisted organic synthesis (MAOS) method from the reaction between bibenzoyl and L-tryptophan and L-Histidine, respectively. The ligands were further transformed into two nickel(II) complex, C1 and C2, as the precursors of catalysts in glucose conversion to sorbitol. The two NiO/SiO2 catalysts, K1 and K2, have been generated through the calcination process of complex C1 and C2, respectively, which were previously impregnated into silica. The K1 catalyst with average particle size of 5 nm shows good catalytic activity, with no presence of any nickel leached into the solution, and has successfully converted 21.99% of glucose into sorbitol. The K2 catalyst with average particle size of 10 nm also shows good catalytic activity and has successfully converted 32.30% of glucose into sorbitol, although it shows the presence of leached nickel.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Gastón P. Barreto ◽  
Graciela Morales ◽  
Ma. Luisa López Quintanilla

The effect of different variables (precursor reagents, temperature, irradiation time, microwave radiation power, and additives addition) on the final morphology of nano-ZnO obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by field emission scanning electron microscopy (FE-SEM) in transmission mode, infrared (FTIR), UV-Vis spectroscopy, and powder X-ray diffraction (XRD). The results showed that all the above-mentioned variables influenced to some extent the shape and/or size of the synthetized nanoparticles. In particular, the addition of an anionic surfactant (sodium di-2-ethylhexyl-sulfosuccinate (AOT)) to the reaction mixture allowed the synthesis of smaller hexagonal prismatic particles (100 nm), which show a significant increase in UV absorption.


2014 ◽  
Vol 183 ◽  
pp. 134-142 ◽  
Author(s):  
Yen-Po Chang ◽  
Po-Hsueh Chang ◽  
Yuan-Tse Lee ◽  
Tai-Jung Lee ◽  
Yen-Ho Lai ◽  
...  

2015 ◽  
Vol 12 (3) ◽  
pp. 527-535
Author(s):  
Baghdad Science Journal

2-benzamide benzothiazole complexes of Pd(II) , Pt(IV) and Au(III) ions were prepared by microwave assisted radiation. The ligand and the complexes were isolated and characterized in solid state by using FT-IR, UV-Vis spectroscopy, flame atomic absorption, elemental analysis CHNS , magnetic susceptibility measurements , melting points and conductivity measurements. The nature of complexes in liquid state was studied by following the molar ratio method which gave results approximately identical to those obtained from isolated solid state; also, stability constant of the prepared complexes were studied and found that they were stable in molar ratio 1:1.The complexes have a sequar planner geometry except Pt(IV) complex has octahedral . A theoretical treatment of ligand and its metal complexes in gas phase were studied using HyperChem-8 program, moreover, ligand in gas phase also has been studied using Gaussian program(GaussView Currently Available Version (5.0.9) along with Gaussian 09 which was the latest in the Gaussian series of programs).


Sign in / Sign up

Export Citation Format

Share Document