Fabrication and Defect Designs on DNA Linked 2-D Colloidal Photonic Crystals Using a Nd:YAG Pulsed Laser

2005 ◽  
Vol 901 ◽  
Author(s):  
Ramazan Asmatulu ◽  
Sejong Kim ◽  
Robin Bright ◽  
Phillip Yu ◽  
Fotios Papadimitrakopoulos ◽  
...  

AbstractControlled defects were created on DNA linked 2-D colloidal photonic crystals using a Nd:YAG pulsed laser. The 2-D photonic crystals were self-assembled using 1.8 μm polystyrene (PS) microspheres on functionalized glass substrates. To synthesize the hexagonal close packed crystalline samples, both substrate and particles attached single-strand DNA, sequence A on the substrate and sequence B on the particles. The DNA was hybridized using the DNA linker with complementary single-strand A’B’ that anchored the particles to the substrate during self-assembly. The 532 nm second harmonic wavelength beam of the pulsed Nd:YAG laser (1064 nm) with a pulse width of 10 ns was used for the removal of individual colloidal particles from the self assembled photonic crystals. In the present tests, the diameter of the laser beam was optically reduced from 7 mm to about 1.8 μm. Controlled line defects and geometrical shapes (e.g., hexagonal and triangle) were created in the 2D arrays in an aqueous medium.

2007 ◽  
Vol 1014 ◽  
Author(s):  
Satoshi Takeda ◽  
Pierre Wiltzius

AbstractA novel technique for fabricating highly ordered colloidal photonic crystals has been developed. In this method, a droplet of water containing polystyrene microspheres was added to the surface of a fluorinated solvent bath. Consequently, the two liquids remained separated and the colloidal particles self-assembled into close-packed structures at the interface between them. By transferring the droplet onto a glass slide, a highly ordered crystal was obtained. This technique offers a new, potentially easier, and more effective approach than currently used. We believe that it will open new ways for fabricating materials based on colloidal crystals as well as applying the colloidal photonic crystals to optical devices.


2004 ◽  
Vol 817 ◽  
Author(s):  
Chun-Wen Kuo ◽  
Hui-Mei Hsieh ◽  
Jung-Chuan Ting ◽  
Yi-Hong Cho ◽  
Kung Hwa Wei ◽  
...  

AbstractWe have developed a fabrication procedure for growing photonic crystals in the lithographic defined microchannels, which enables easy integration with other planar optical components. This technique is based on the directed evaporation induced self-assembly of nanoparticles in the microchannels. Substrates with pre-patterned microchannels (30-100 μm wide) were dipped into solution of nanoparticles for several days. By controlling the evaporation rate, the meniscus contacting the microchannels will undergo evaporation-induced self-assembly. The capillary forces cause nanospheres to crystallize within the microchannels forming colloidal photonic crystals in the microchannels. Two types of colloidal particles, polystyrene and silica, have been employed to fabricate colloidal photonic crystals in the microchannels. Both types of colloidal particles were found to form large-area well-ordered colloidal single crystals in the microchannels. The optical reflection spectra from the (111) surfaces of the colloidal crystals formed by various sizes of nanoparticles have been measured. And the measured reflection peaks agree with the photonic bandgap calculated by the plane wave expansion method.


2021 ◽  
Author(s):  
Zhongyu Cai ◽  
Zhiwei Li ◽  
Serge Ravaine ◽  
Mingxin He ◽  
Yanlin Song ◽  
...  

This paper reviews the advances in the state-of-the-art colloidal self-assembly methods to fabricate colloidal photonic crystals and their emerging applications.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


2020 ◽  
Vol 4 (8) ◽  
pp. 2409-2417
Author(s):  
Mengfan Wu ◽  
Chuyan Zhang ◽  
Fujing Wei ◽  
Huifang An ◽  
Xiaqing Wang ◽  
...  

This is the first time that a hydrogel interface has been used as an assembly interface for the self-assembly of photonic crystals with excellent performances.


2003 ◽  
Vol 139 (3) ◽  
pp. 643-647 ◽  
Author(s):  
O. Popov ◽  
V. Lirtsman ◽  
F. Kopnov ◽  
D. Davidov ◽  
T. Saraidarov ◽  
...  

ACS Nano ◽  
2020 ◽  
Vol 14 (5) ◽  
pp. 5348-5359 ◽  
Author(s):  
Abhishek B. Rao ◽  
James Shaw ◽  
Andreas Neophytou ◽  
Daniel Morphew ◽  
Francesco Sciortino ◽  
...  

2016 ◽  
Vol 16 (2) ◽  
pp. 1017-1026 ◽  
Author(s):  
Enrico Sowade ◽  
Thomas Blaudeck ◽  
Reinhard R. Baumann

2003 ◽  
Vol 137 (1-3) ◽  
pp. 993-995 ◽  
Author(s):  
Freida Kopnov ◽  
Vlad Lirtsman ◽  
Dan Davidov

1994 ◽  
Vol 351 ◽  
Author(s):  
Shlomo Yitzchaik ◽  
Paul M. Lundquist ◽  
Weiping Lin ◽  
David R. Kanis ◽  
Mark A. Ratner ◽  
...  

ABSTRACTAn attractive and challenging approach to the construction of robust, thin film materials with large second-order optical nonlinearities is the covalent self-assembly of aligned arrays of high-β molecular chromophores into multilayer superlattices. In this paper, we describe the dispersion of second harmonic generation (SHG) in a self-assembled (SA) monolayer containing a stilbazolium chromophore. The frequency-dependent measurements were performed on 25 Å thick monolayers on glass using a tunable (0.4–2 μm) light source based on optical parametric amplification (OPA). The SHG spectrum contains a clear two-photon resonance at hω = 1.3eV. The maximum in the second-order susceptibility coincides with a low energy chromophore-centered charge-transfer excitation at 480 nm. The experimental SHG dispersion values compare favorably with theoretical results computed using a sum-over-states (SOS) formalism. However, the measured values exhibit a somewhat broader band response than the theoretical curve, and the origin of this behavior is discussed.


Sign in / Sign up

Export Citation Format

Share Document