Study of Fission and High-burnup Induced Restructuring of Nuclear Fuel Ceramics - Applying Computer Science to Investigate Kinetic Process

2007 ◽  
Vol 1043 ◽  
Author(s):  
Motoyasu Kinoshita ◽  
Ying Chen ◽  
Yasunori Kaneta ◽  
Hua Yun Geng ◽  
Misako Iwasawa ◽  
...  

AbstractTo improve understanding of radiation damage and recovery process, especially under condition of high energy and high fluence irradiation, is currently studied at the new cross-over project (NXO). Most severe irradiation is realized by fission fragments in nuclear fuel. A guiding experiment is taken from experience in power generating Light Water Reactor (LWR) fuel. At high burnup around 7%FIMA, fuel ceramics do have restructuring of the grain sub-division where diameter of grains change down to 50 to 200 nm. The NXO investigates the process mechanism crossing over research activities of universities, national and private laboratories. Simulation studies are being performed to find principal and triggering processes, using accelerator irradiation and computational calculations. Accelerator irradiation partly succeeded to reproduce the process outside of the fission reactor using simulation material of CeO2. High resolution TEM observations, comparing microstructure changes of high burnup reactor fuel and the simulated material, shows that principal process is polygonization and indicates that Oxygen defects and planar structures, of different scales, have key role on the kinetics. Basic research works of computing science, including first principle calculations, molecular dynamics, Monte-Carlo, and meso-scale cellular automata modeling are underway.Framework of computational study is based on understanding of the repeat of passing of fission-fragment tracks, which provide overheating and quenching cycles in time domain. It throws local atoms into higher energy quasi-stable placement and configurations. Extensive experimental observations, previously obtained and presently gained by accelerator irradiations, enable the analyses to focus into key configurations in search of the target process. Stability of planar precipitation of Xenon atomson [111] plane of the fluorite structure were demonstrated by molecular dynamics calculation. Complex kinetic processes, including stability and collective behavior, of interstitial Oxygen atoms are investigated by first principle calculations, molecular dynamics and Monte-Carlo studies.Statistical irradiation-dynamics, for studying repeated energy-deposit cycles, may enable to draw kinetic phase diagrams. Discussions were made to have statistical counting of possible repeated traces, in relevant narrowed “investigation range” defined in time domain, configuration space and local energy.

1968 ◽  
Vol 46 (10) ◽  
pp. S189-S196 ◽  
Author(s):  
K. O. Thielheim ◽  
E. K. Schlegel ◽  
R. Beiersdorf

Three-dimensional Monte Carlo calculations have been performed on the trajectories of high-energy hadrons in extensive air showers. The central electron density and gradient of distribution are obtained for individual electromagnetic cascades together with coordinates at the level of observation. Various assumptions concerning primary mass number and energy, distributions of strong interaction parameters, and fragmentation mechanisms are discussed with respect to the production of steep maxima of electron density by single electromagnetic cascades in the core region of extensive air showers.


2020 ◽  
Vol 171 ◽  
pp. 108760 ◽  
Author(s):  
Y.H. Kim ◽  
C.Y. Yi ◽  
I.J. Kim ◽  
B.C. Kim ◽  
J.H. Kim ◽  
...  

2016 ◽  
Vol 43 (7) ◽  
pp. 4122-4132 ◽  
Author(s):  
Ana Lourenço ◽  
Russell Thomas ◽  
Hugo Bouchard ◽  
Andrzej Kacperek ◽  
Vladimir Vondracek ◽  
...  

1997 ◽  
Vol 469 ◽  
Author(s):  
Marius M. Bunea ◽  
Scott T. Dunham

The lattice Monte Carlo method with parameters from recent first-principle calculations1,2 are used to investigate dopant diffusion in silicon. In the simulations, vacancy hopping on a silicon lattice is biased by changes in system energy, including interactions up to the sixth-nearest neighbor. We find that vacancy-mediated diffusivity increases dramatically above 1020 cm−3, in agreement with experimental observations3 and previous calculations.4 However, for very long simulation times, arsenic diffusivity is reduced due to formation of AsxV complexes, with clustering more pronounced at high doping levels. As suggested by Ramamoorthy and Pantelides,5 we find that As2V complexes are mobile, and although they diffuse much more slowly than AsV pairs, they appear likely to have a significant role in high concentration diffusion due to their much higher numbers. We also investigated dopant fluxes in a vacancy gradient. For dopants like As for which pair diffusion is limited by the dissociation to third-nearest neighbor distances, the dopant flux is less than that predicted by pair diffusion models, with greater difference at higher temperatures. In contrast, for phosphorus/vacancy pairs, whose diffusion is limited by dopant/vacancy exchange, the dopant flux is close to the predictions of pair diffusion.


2010 ◽  
Vol 85 (7-9) ◽  
pp. 1167-1172 ◽  
Author(s):  
K. Ohya ◽  
N. Mohara ◽  
K. Inai ◽  
A. Ito ◽  
H. Nakamura ◽  
...  

2017 ◽  
Vol 12 ◽  
pp. 38-73
Author(s):  
Tomasz Wejrzanowski ◽  
Krzysztof Jan Kurzydlowski

The results of the studies presented here are devoted to understanding of microstructure effect on the processes and properties driven by diffusion. The role of various interfaces (intergranular, phase, free surface), as the high-energy defects, is underlined and investigated with special attention. The methodology relevant to analyses of the microstructural processes is first briefly presented. The capability and limitations of classical molecular dynamics, mesoscale Monte Carlo and cellular automaton techniques are described. Two examples of the diffusion driven processes analyzed at various length and time scale are shown: namely, grain growth in nanometallic materials and melting of thin embedded films. The modeling results are also accompanied with experimental studies. Thanks to application of numerical methods, models of relevant processes were proposed, which enabled to provide quantitative relationships between microstructure and the process kinetics. Such relationships can be later used for design of optimized materials for wide range of applications.


Sign in / Sign up

Export Citation Format

Share Document