Modeling magnetoelasticity and magnetoplasticity with disconnections and disclinations

2007 ◽  
Vol 1050 ◽  
Author(s):  
Peter Mullner ◽  
Alan Steward Geleynse ◽  
David Robert Carpenter ◽  
Michael Scott Hagler ◽  
Markus Chmielus

AbstractThe magneto-mechanical properties of magnetic shape-memory alloy single crystals depend strongly on the twin microstructure which is established during the martensitic transformation, and through thermo-magneto-mechanical training. For self-accommodated martensite, twin thickness and magnetic-field-induced strain are very small. For effectively trained crystals, a single twin may comprise the entire sample and magnetic-field-induced strain reaches the theoretical limit. Furthermore, the deformation of self-accommodated martensite is pseudo-elastic (magnetoelasticity) while the deformation of effectively trained crystals is plastic (magnetoplasticity). Twin microstructures of self-accommodated martensite were modeled using disclinations which are line defects such as dislocations, however with a rotational displacement field. The defect structure was approximated in a quadrupole solution where two quadrupoles represent an elementary twin double layer unit. The twin boundary was inclined to the twinning plane which required the introduction of twinning disconnections. The shear stress-shear strain properties of self-accommodated martensite were analyzed numerically for different initial configurations of the twin boundary (i.e. for different initial positions of the disconnections). The shear stress-shear strain curve is sensitive to the initial configuration indicating that disconnection nucleation is controlling the magneto-mechanical properties of self-accommodated martensite.

2008 ◽  
Vol 1090 ◽  
Author(s):  
Markus Chmielus ◽  
David Carpenter ◽  
Alan Geleynse ◽  
Michael Hagler ◽  
Rainer Schneider ◽  
...  

AbstractTwin boundary motion is the mechanism that drives the plastic deformation in magnetic shape memory alloys (MSMAs), and is largely dependent on the twin microstructure of the MSMA. The twin microstructure is established during the martensitic transformation, and can be influenced through thermo-magneto-mechanical training. For self-accommodated and ineffectively trained martensite, twin thickness and magnetic-field-induced strain (MFIS) are very small. For effectively trained crystals, a single crystallographic domain may comprise the entire sample and MFIS reaches the theoretical limit. In this paper, a numerical simulation is presented describing the twin microstructures and twin boundary motion of self-accommodated martensite using disclinations and disconnections (twinning dislocations). Disclinations are line defects such as dislocations, however with a rotational displacement field. A quadrupole solution was chosen to approximate the defect structure where two quadrupoles represent an elementary twin double layer unit. In the simulation, the twin boundary was inclined to the twinning plane which required the introduction of twinning disconnections, which are line defects with a stress field similar to dislocations. The shear stress - shear strain properties of self-accommodated martensite were analyzed numerically for different initial configurations of the twin boundary (i.e. for different initial positions of the disconnections). The shear stress - shear strain curve was found to be sensitive to the initial configuration of disconnections. If the disconnections are very close to boundaries of hierarchically higher twins – such as is the case for self-accommodated martensite, there is a threshold stress for twin-boundary motion. If the disconnections are spread out along the twin boundary, twinning occurs at much lower stress.


2021 ◽  
Vol 2 (1) ◽  
pp. 174-194
Author(s):  
Luís Bernardo ◽  
Saffana Sadieh

In previous studies, a smeared truss model based on a refinement of the rotating-angle softened truss model (RA-STM) was proposed to predict the full response of structural concrete panel elements under in-plane monotonic loading. This model, called the “efficient RA-STM procedure”, was validated against the experimental results of reinforced and prestressed concrete panels, steel fiber concrete panels, and reinforced concrete panels externally strengthened with fiber-reinforced polymers. The model incorporates equilibrium and compatibility equations, as well as appropriate smeared constitutive laws of the materials. Besides, it incorporates an efficient algorithm for the calculation procedure to compute the solution points without using the classical trial-and-error technique, providing high numerical efficiency and stability. In this study, the efficient RA-STM procedure is adapted and checked against some experimental data related to reinforced concrete (RC) panels tested under in-plane cyclic shear until failure and found in the literature. Being a monotonic model, the predictions from the model are compared with the experimental envelopes of the hysteretic shear stress–shear strain loops. It is shown that the predictions for the shape (at least until the peak load is reached) and for key shear stresses (namely, cracking, yielding, and maximum shear stresses) of the envelope shear stress–shear strain curves are in reasonably good agreement with the experimental ones. From the obtained results, the efficient RA-STM procedure can be considered as a reliable model to predict some important features of the response of RC panels under cyclic shear, at least for a precheck analysis or predesign.


2006 ◽  
Vol 512 ◽  
pp. 195-200 ◽  
Author(s):  
Nariaki Okamoto ◽  
Takashi Fukuda ◽  
Tomoyuki Kakeshita ◽  
Tetsuya Takeuchi

Ni2MnGa alloy with 10M martensite exhibits rearrangement of martensite variants (RMV) by magnetic field, but Ni2.14Mn0.92Ga0.94 with 2M martensite does not. In order to explain the difference, we measured uniaxial magnetocrystalline anisotropy constant Ku and the stress required for twinning plane movement τreq in these alloys. Concerning the former alloy, the maximum value of magnetic shear stress acting across twinning plane τmag, which is evaluated as |Ku| divided by twinning shear, becomes larger than τr eq. On the other hand, concerning the latter alloy, the maximum of τmag is only one-tenth of τreq at any temperature examined. Obviously, the relation, τmag> τr eq, is satisfied when RMV occurs by magnetic field and vice versa. In this martensite, the large twinning shear of 2M martensite is responsible for small τmag and large τreq.


2013 ◽  
Vol 446-447 ◽  
pp. 230-234
Author(s):  
Tao Li ◽  
She Liang Wang ◽  
Tao Yang ◽  
Guang Yuan Weng

With shape memory function of new smart material, the magnetic control properties of magnetic shape memory alloy could be used to fabricate intelligent actuators for vibration control of structures. In order to study its magnetic properties, this text selected Ni53Mn25Ga22 as the material for the research and development of actuator drive, And two MSMA test specimens were prepared for the experimental study under the coupled action of the temperature, preload pressure and magnetic field. The results showed that the strain of MSMA induced by magnetic field decreased with the increase of the preload pressure at constant magnetic field. The deformation performance was best when the magnetic induction intensity was about 0.5T. And the constitutive relations were fitted for the actuator production to lay the foundation for later.


2006 ◽  
Vol 519-521 ◽  
pp. 865-870 ◽  
Author(s):  
X.B. Wang

Gradient-dependent plasticity where a characteristic length is involved to consider the microstructural effect (interactions and interplaying among microstructures due to the heterogeneous texture) and the measured nonlinear shear stress-shear strain curves for different loading strain rates are used to calculate the distribution of local temperature rise in adiabatic shear band (ASB) for aluminum-lithium alloy specimen of thin-walled tube in dynamic torsion test. ASB is assumed to initiate just at peak shear stress in the specimen. The temperature rise in ASB is decomposed into the uniform temperature rise in strain-hardening stage and the nonuniform temperature rise in strain-softening stage. The former depends on the measured nonlinear shear stress-shear strain curve prior to the peak, the density, the work to heat conversion factor and the heat capacity. The latter is related to the softening branch of the measured nonlinear shear stress-shear strain curve, the internal length parameter and the physical parameters. For binary Al-Li alloy, the predicted maximum temperatures in ASB are 413K at strain rate of 2000s-1 and 433K at strain rate of 2600s-1. These peak temperatures are lower than the recrystallization and phase transformation temperatures. Higher loading strain rate results in higher pre-peak and post-peak temperature rises, steeper profile of local temperature and higher peak local temperature in ASB. These predictions qualitatively agree with the previously analytical solution for ductile metal exhibiting linear strain-softening behavior beyond the peak shear stress based on gradient-dependent plasticity.


2011 ◽  
Vol 121-126 ◽  
pp. 191-195
Author(s):  
Zhi Wen Zhu ◽  
Liang Gao ◽  
Jia Xu

In this paper, a kind of Magnetic Shape Memory Alloy (MSMA) model based on hysteretic nonlinear theory was developed. Von del Pol nonlinear difference item was introduced to interpret the hysteresis phenomenon of strain-magnetic field intensity (MFI) curve of MSMA. The final relationship among strain, stress and magnetic field intensity was obtained in partial least-square regression method to describe the variation of strain-MFI curve with stress. The result of forecast test shows that the model can describe the characteristics of MSMA in different stress well. The new MSMA model is easy to be analyzed in theory, which is helpful to application of MSMA in engineering fields.


Sign in / Sign up

Export Citation Format

Share Document