A Trade Study for Waste Concepts to Minimize HLW Volume

2008 ◽  
Vol 1124 ◽  
Author(s):  
Dirk Gombert ◽  
Joe Carter ◽  
Bill Ebert ◽  
Steve Piet ◽  
Tim Trickel ◽  
...  

AbstractAdvanced nuclear fuel reprocessing can partition wastes into groups of common chemistry. This enables new waste management strategies not possible with the plutonium, uranium extraction (PUREX) process alone. Combining all of the metallic fission products in an alloy and the balance as oxides in glass minimizes high level waste (HLW) volume. Implementing a waste management strategy using state-of-the-art combined waste forms and storage to allow radioactive decay and heat dissipation prior to placement in a repository makes it possible to place almost 10x the HLW equivalent of spent nuclear fuel (SNF) in the same repository space. However, using generic costs based on preliminary studies for waste stabilization facilities and separations modules, this analysis shows that combining the non-actinide wastes and using only one glass waste form is the most cost-effective.

2021 ◽  
Vol 13 (19) ◽  
pp. 10780
Author(s):  
Anna V. Matveenko ◽  
Andrey P. Varlakov ◽  
Alexander A. Zherebtsov ◽  
Alexander V. Germanov ◽  
Ivan V. Mikheev ◽  
...  

Pyrochemistry is a promising technology that can provide benefits for the safe reprocessing of relatively fresh spent nuclear fuel with a short storage time (3–5 years). The radioactive waste emanating from this process is an electrolyte (LiCl–KCl) mixture with fission products included. Such wastes are rarely immobilized through common matrices such as cement and glass. In this study, samples of ceramic materials, based on natural bentonite clay, were studied as matrices for radioactive waste in the form of LiCl–KCl eutectic. The phase composition of the samples, and their mechanical, hydrolytic, and radiation resistance were characterized. The possibility of using bentonite clay as a material for immobilizing high-level waste arising from pyrochemical processing of spent nuclear fuel is further discussed in this paper.


2019 ◽  
pp. 52-57
Author(s):  
T. Maltseva ◽  
А. Shyshuta ◽  
S. Lukashyn

The paper is devoted to the history of development and the current state of technological and scientific advances in radiochemical reprocessing of spent nuclear fuel from water-cooled power reactors. Regarding spent nuclear fuel (SNF) of NPP power reactors, long-term energy security involves adopting a version of its radiochemical treatment, conditioning and recirculation. Recycling SNF is required for the implementation of a closed fuel cycle and the re-use of regeneration products as energy reactor fuels. The basis of modern technological schemes for the reprocessing of the spent nuclear fuel is the “Purex” process, developed since the 60s in the USA. The classic approach to the use of U and Pu nuclides contained in spent nuclear fuel is to separate them from fission products, re-enrich regenerated uranium and use plutonium for the production of mixed-oxide (MOX) fuel with depleted uranium. The modern reprocessing plants are able to deal with fuel with further increase of its main characteristics without significant changes in the initial project. In order to close the fuel cycle, it is needed to add the following technological steps: (1) removal of high-level and long-lived components and minor actinides; (2) return of actinides to the technological cycle; (3) safe disposal of unused components. Each of these areas is under investigation now. Several new promising multi-cycle hydrometallurgical processes based on the joint extraction of trivalent lanthanides and minor actinides with their subsequent separation have been developed. A number of promising materials is suggested to be potential matrices for the immobilization of high-level components of radioactive wastes. To improve the compatibility of fuel processing with the environment, non-aqueous technologies are being developed, for instance, pyro-chemical methods for the reprocessing of various types of highly active fuels based on metals, oxides, carbides, or nitrides. An important scientific and technological task under investigation is transmutation of actinides. The results of international large-scale experiments on the partitioning and transmutation of fuel with various minor actinides and long-lived fission products confirm the real possibility and expediency of closing the nuclear fuel cycle.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
A. Schwenk-Ferrero

Germany is phasing-out the utilization of nuclear energy until 2022. Currently, nine light water reactors of originally nineteen are still connected to the grid. All power plants generate high-level nuclear waste like spent uranium or mixed uranium-plutonium dioxide fuel which has to be properly managed. Moreover, vitrified high-level waste containing minor actinides, fission products, and traces of plutonium reprocessing loses produced by reprocessing facilities has to be disposed of. In the paper, the assessments of German spent fuel legacy (heavy metal content) and the nuclide composition of this inventory have been done. The methodology used applies advanced nuclear fuel cycle simulation techniques in order to reproduce the operation of the German nuclear power plants from 1969 till 2022. NFCSim code developed by LANL was adopted for this purpose. It was estimated that ~10,300 tonnes of unreprocessed nuclear spent fuel will be generated until the shut-down of the ultimate German reactor. This inventory will contain ~131 tonnes of plutonium, ~21 tonnes of minor actinides, and 440 tonnes of fission products. Apart from this, ca.215 tonnes of vitrified HLW will be present. As fission products and transuranium elements remain radioactive from 104to 106years, the characteristics of spent fuel legacy over this period are estimated, and their impacts on decay storage and final repository are discussed.


Author(s):  
Concettina Andrello ◽  
Daniel Freis ◽  
Rosa Lo Frano ◽  
Dimitri Papaioannou ◽  
Fabienne Delage

The amount of spent fuel and high-level waste already available, and which will be produced by the future NPPs operation, calls for the evaluation of any possible technological solution that could minimize the burden of their disposal: reduction of Minor Actinide (MA) content, in addition to the radiotoxicity and radioactivity, and of the generated thermal load (decay heat). In this context, R&D efforts currently focus on the development of methodologies and technical solutions for Partitioning and Transmutation. MAs and long-lived fission products are in fact the main contributors to the long-term radiotoxicity of spent nuclear fuel, and their transmutation to short-lived fission products, in fast spectrum nuclear reactors, in transmuters or in Accelerator Driven Systems (ADS), by neutron irradiation of dedicated fuels/targets, is a promising and widely investigated option. In order to provide substantial input for the safety assessment of innovative nuclear fuels dedicated to MA transmutation, several irradiation tests are being carried out. In some options, the investigated fuels/targets are uranium free, or of low uranium content, to improve the transmutation performance and contain high concentrations of MA and plutonium compounds. Two molybdenum based CER-MET fuels, called ITU-5 & ITU-6, were prepared at JRC Karlsruhe for the irradiation experiment FUTURIX-FTA (FUel for Transmutation of transURanium elements in phenIX/Fortes Teneurs en Actinide). The experiment performed from 2007 to 2009 in the Phénix reactor, France, in cooperation with CEA. The experiment ended after 235 equivalent full power days (EFPD) at a Linear Heat Rate of circa 130 W/cm and reached burn-ups of 18 %FIHMA and 13 %FIHMA, respectively. Afterwards, the pins were transported to the Hot Cells of JRC Karlsruhe for Post Irradiation Examination. After a short summary describing the fuel preparation and irradiation conditions of the FUTURIX FTA irradiation experiment, the paper will give an overview on the current status and further planning of the Post Irradiation Examinations of ITU-5 & ITU-6 at JRC Karlsruhe. Finally, the results of the characterisations will be discussed and conclusions on the irradiation performance will be drawn. The results of this experiment will help to increase the knowledge and understanding of the irradiation behaviour of metal based transmutation targets and the qualification and validation of models developed to predict fuel safety performance.


2021 ◽  
Author(s):  
Xuesong Yan ◽  
Yaling Zhang ◽  
Yucui Gao ◽  
Lei Yang

Abstract To make the nuclear fuel cycle more economical and convenient, as well as prevent nuclear proliferation, the conceptual study of a simple high-temperature dry reprocessing of spent nuclear fuel (SNF) for a ceramic fast reactor is proposed in this paper. This simple high-temperature dry (HT-dry) reprocessing includes the Atomics International Reduction Oxidation (AIROX) process and purification method for rare-earth elements. After removing the part of fission products from SNF by a HT-dry reprocessing without fine separation, the remaining nuclides and some uranium are fabricated into fresh fuel which can be used back to the ceramic fast reactor. Based on the ceramic coolant fast reactor, we studied neutron physics of nuclear fuel cycle which consists operation of ceramic reactor, removing part of fission products from SNF and preparation of fresh fuels for many time. The parameters of the study include effective multiplication factor (Keff), beam density, and nuclide mass for different ways to remove the fission products from SNF. With the increase in burnup time, the trend of increasing 239Pu gradually slows down, and the trend of 235U gradually decreases and become balanced. For multiple removal of part of fission products in the nuclear fuel cycle, the higher the removal, the larger the initial Keff.


Sign in / Sign up

Export Citation Format

Share Document