Fracture and Fatigue of Niobium Silicide Alloys

2008 ◽  
Vol 1128 ◽  
Author(s):  
David M. Herman ◽  
Bernard P Bewlay ◽  
Laurent Cretegny ◽  
Richard DiDomizio ◽  
John Lewandowski

AbstractThe fracture and fatigue behavior of refractory metal silicide alloys/composites is significantly affected by the mechanical behavior of the refractory metal phase. This paper reviews some of the balance of properties obtained in the alloys/composites based on the Nb-Si system. Since some of the alloy/composite properties are dominated by the behavior of the refractory metal phase, the paper begins with a review of data on monolithic Nb and its alloys. This is followed by presentation of results obtained on Nb-Si alloys/composites and a comparison to behavior of some other high temperature systems.

JOM ◽  
1999 ◽  
Vol 51 (4) ◽  
pp. 32-36 ◽  
Author(s):  
B. P. Bewlay ◽  
M. R. Jackson ◽  
P. R. Subramanian

Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Wieland Duro Tantalum is unalloyed tantalum that is produced from powder metallurgy consolidated ingots. It is a versatile refractory metal that is used in demanding applications requiring resistance to high temperature and corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance as well as machining and joining. Filing Code: Ta-14. Producer or source: Wieland Duro GmbH.


1994 ◽  
Author(s):  
Terry R. Barnett ◽  
H. S. Starrett

2000 ◽  
Author(s):  
Ronald Gibala ◽  
Amit K. Ghosh ◽  
David J. Srolovitz ◽  
John W. Holmes ◽  
Noboru Kikuchi

2014 ◽  
Vol 1039 ◽  
pp. 107-111
Author(s):  
Yang Chen ◽  
Gui Qin Li ◽  
Bin Ruan ◽  
Xiao Yuan ◽  
Hong Bo Li

The mechanical behavior of plastic material is dramatically sensitive to temperature. An method is proposed to predict the mechanical behavior of plastics for cars, ranging from low-temperature low temperature ≤-40°C to high temperature ≥80°C. It dominates the behavior of plastic material based on improved constitutive model in which the parameters adjusted by a series of tests under different temperatures. The method is validated with test and establishes the basis for research and development of plastic parts for automobile as well.


Sign in / Sign up

Export Citation Format

Share Document