microtensile testing
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 5)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Szymon Nosewicz ◽  
Piotr Bazarnik ◽  
Melanie Clozel ◽  
Łukasz Kurpaska ◽  
Piotr Jenczyk ◽  
...  

AbstractExperiments were conducted to investigate, within the framework of a multiscale approach, the mechanical enhancement, deformation and damage behavior of copper–silicon carbide composites (Cu–SiC) fabricated by spark plasma sintering (SPS) and the combination of SPS with high-pressure torsion (HPT). The mechanical properties of the metal–matrix composites were determined at three different length scales corresponding to the macroscopic, micro- and nanoscale. Small punch testing was employed to evaluate the strength of composites at the macroscopic scale. Detailed analysis of microstructure evolution related to SPS and HPT, sample deformation and failure of fractured specimens was conducted using scanning and transmission electron microscopy. A microstructural study revealed changes in the damage behavior for samples processed by HPT and an explanation for this behavior was provided by mechanical testing performed at the micro- and nanoscale. The strength of copper samples and the metal–ceramic interface was determined by microtensile testing and the hardness of each composite component, corresponding to the metal matrix, metal–ceramic interface, and ceramic reinforcement, was measured using nano-indentation. The results confirm the advantageous effect of large plastic deformation on the mechanical properties of Cu–SiC composites and demonstrate the impact on these separate components on the deformation and damage type.



Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 450
Author(s):  
Apinya Limvisitsakul ◽  
Suppason Thitthaweerat ◽  
Pisol Senawongse

This paper presents the effect of blade type and feeding force during resin-bonded dentin specimen preparation on the microtensile bond strength (μTBS) test. Forty resin-bonded flat middle dentin specimens were divided into four groups. The specimens of each group were sectioned according to type of blade and feeding force as follows: fine grit/20 N, fine grit/40 N, medium grit/20 N, and medium grit/40 N to obtain resin-dentin sticks with a cross-sectional area of 1.0 mm2. Four sticks from the center of each tooth were subjected to the μTBS test. Five remaining sticks of each group were selected for surface topography observation under a scanning electron microscope (SEM). As a result, the bond strength of the medium-grit group was higher than that of the fine-grit group (p < 0.001), whereas the feeding force had no influence on bond strength values (p = 0.648). From the SEM, sticks prepared with the fine-grit blade showed a smoother surface integrity and fewer defects on the specimen edges in comparison with the sticks prepared with the medium-grit blade. The grit type of the blade is one of the considerable factors that may affect the bond strength and the surface integrity of resin-dentin specimens for microtensile testing.





Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 186
Author(s):  
Mark D. Francisco ◽  
Cheng-Tang Pan ◽  
Bo-Hao Liao ◽  
Mao-Sung Wu ◽  
Ru-Yuan Yang ◽  
...  

Environmental and economic concerns are driving the demand for electric vehicles. However, their development for mass transportation hinges largely on improvements in the separators in lithium-ion batteries (LIBs), the preferred energy source. In this study, innovative separators for LIBs were fabricated by near-field electrospinning (NFES) and the sol-gel method. Using NFES, poly (vinylidene fluoride) (PVDF) fibers were fabricated. Then, PVDF membranes with pores of 220 nm and 450 nm were sandwiched between a monolayer and bilayer of the electrospun fibers. Nanoceramic material with organic resin, formed by the sol-gel method, was coated onto A4 paper, rice paper, nonwoven fabric, and carbon synthetic fabric. Properties of these separators were compared with those of a commercial polypropylene (PP) separator using a scanning electron microscope (SEM), microtensile testing, differential scanning calorimetry (DSC), ion-conductivity measurement, cyclic voltammetry (CV), and charge-discharge cycling. The results indicate that the 220 nm PVDF membrane sandwiched between a bilayer of electrospun fibers had excellent ionic conductivity (~0.57 mS/cm), a porosity of ~70%, an endothermic peak of ~175 °C, better specific capacitance (~356 mAh/g), a higher melting temperature (~160 °C), and a stable cycle performance. The sol-gel coated nonwoven fabric had ionic conductivity, porosity, and specific capacitance of ~0.96 mS/cm., ~64%, and ~220 mAh/g, respectively, and excellent thermal stability despite having a lower specific capacitance (65% of PP separator) and no peak below 270 °C. The present study provides a significant step toward the innovation of materials and processes for fabricating LIB separators.



Author(s):  
M. Alfreider ◽  
M. Meindlhumer ◽  
V. Maier-Kiener ◽  
A. Hohenwarter ◽  
D. Kiener

Abstract Micromechanical testing techniques can reveal a variety of characteristics in materials that are otherwise impossible to address. However, unlike to macroscopic testing, these miniaturized experiments are more challenging to realize and analyze, as loading and boundary conditions can often not be controlled to the same extent as in standardized macroscopic tests. Hence, exploiting all possible information from such an experiment seems utmost desirable. In the present work, we utilize dynamic in situ microtensile testing of a nanocrystalline equiatomic CoCrFeMnNi high entropy alloy in conjunction with initial feature tracking to obtain a continuous two-dimensional strain field. This enables an evaluation of true stress–strain data as well as of the Poisson’s ratio and allows to study localization of plastic deformation for the specimen. We demonstrate that the presented image correlation method allows for an additional gain of information in these sophisticated experiments over commercial tools and can serve as a starting point to study deformation states exhibiting more complex strain fields. Graphic abstract



2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ayça Deniz Izgi ◽  
Eylem Kaya ◽  
Ediz Kale ◽  
Mustafa Zortuk

SummaryBackground/Aim: The aim of this study was to evaluate the bond strength of glass ceramic inlay system using 2 antibacterial adhesive luting protocols with 2 cementation techniques to bur-cut dentin.Material and Methods: Class I inlay cavities with 6-degree occlusal divergence and size of 6-, 3- and 2-mm in length, width and depth, were prepared on extracted human molars, randomly assigned to 2 main groups; each to 1 cementation technique, with or without immediate-dentin-bonding (IDB or NIDB) further divided into 3 subgroups; 2 to 2 antibacterial luting protocols, traditional (T) and experimental (E); and 1 to a control (C) group. In group IDBT, IDB-E and IDB-C dentin bonding was applied immediately after cavity preparation. In group NIDB-T, NIDB-E and NIDB-C dentin bonding was applied just before cementation of the restorations. The cavities in IDB-T and NIDB-T were treated with 2% chlorhexidine-digluconate (CHX) prior to dentin bonding application. The cavities in IDB-E and NIDB-E were treated only with dentin bonding system containing MDPB (12-methacryloyloxydodecylpyridinium bromide) active monomer featuring antibacterial effect. IDB-C and NIDB-C served as control. Dual-cure adhesive resin cement was used for the cementation of lithium disilicate-based ceramic inlay restorations. Fourteen test specimens per group were prepared for microtensile testing and consecutively subjected to tensile load at a crosshead speed of 1 mm/min. The mode of failure was observed under SEM and evaluated for each group. The Kruskal-Wallis test was used to investigate the statistical difference between groups (α=0.05).Results: The microtensile load was 5.96 MPa (median: 5.99 MPa) for IDB-T, 7.23 MPa (median: 7.55 MPa) for IDB-E, 6.68 MPa (median: 6.56 MPa) for IDB-C, 7.24 MPa (median: 7.20 MPa) for NIDB-T, 6.98 MPa (median: 6.30 MPa) for NIDB-E, and 7.02 MPa (median: 6.99 MPa) for NIDB-C, with no statistical difference between the groups (p>0.05). SEM monitoring for mode of failure revealed either cohesive (within resin cement) or adhesive-cohesive (mostly within resin cement along with partially involved areas between resin cement and ceramic restoration) character.Conclusions: Within the limitations of the current study, none of the tested antibacterial luting protocols with either cementation technique was found to be superior in terms of bond strength.



2020 ◽  
Author(s):  
J. WANNI ◽  
J. G. MICHOPOULOS ◽  
A. BAGCHI ◽  
S. BANERJEE ◽  
N. BANERJEE ◽  
...  


2020 ◽  
Vol 2 (1) ◽  
pp. 29-35
Author(s):  
Ulysses Lenz ◽  
Rodrigo Alessandretti ◽  
Alvaro Della Bona

Background: It’s shown that the clinical success of ceramic restorations much depends on the quality and durability of the bond to ceramic. For zirconia-based ceramics (Y-TZP), the surface treatment has a substantial impact on bond strength. Therefore, the bond strength evaluation of Y-TZP surface treatments is a requirement for predicting the clinical performance of such restorations. Objective: Evaluating the resin bond strength to Y-TZP after different surface treatments. Methods: Monolithic Y-TZP (Zenostar Zr Translucent, Wieland Dental, Rosbach vor der Höhe, Germany) blocks were bonded to resin composite blocks using a resin-based cement system after two Y-TZP surface treatments: APA- airborne particle abrasion with alumina particles; and CJ- silicatization (Cojet sand, 3M ESPE, St. Paul, MN, USA). A silane coupling agent and an adhesive system were applied to the treated Y-TZP surfaces and resin composite blocks were cemented (RelyX Ultimate, 3M ESPE, St. Paul, MN, USA) and light activated from all sides. These structures were cut to obtain bar-shaped specimens (n=30), which were stored in 37ºC distilled water for 7 days before microtensile testing. Specimens were loaded to failure under tension using a universal testing machine. Data was statistically analyzed using Students t test (α=0.05) and Weibull distribution. Failure modes were evaluated using optical (OM) and scanning electron microscopy (SEM). Results: Mean bond strength values (CJ= 25.7±8.2 MPa; APA= 22.0±6.3 MPa) were statistically similar (p>0.05). No difference was found for the characteristic strengths (σ0) and for Weibull moduli (m) since the confidence intervals (95% CI) overlapped. The bond strength values for a 5% failure probability (σ5%) were 12.4 (CJ) and 11.5 (APA). All fractures were due to cohesive failure within the adhesive cement system. Conclusion: Both Y-TZP surface treatments (CJ and APA) produced similar structural reliability and short-term bond strength to a resin cement system.



Biomimetics ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 19 ◽  
Author(s):  
Ingo Doench ◽  
Tuan Tran ◽  
Laurent David ◽  
Alexandra Montembault ◽  
Eric Viguier ◽  
...  

The development of non-cellularized composites of chitosan (CHI) hydrogels, filled with cellulose nanofibers (CNFs) of the type nanofibrillated cellulose, was proposed for the repair and regeneration of the intervertebral disc (IVD) annulus fibrosus (AF) tissue. With the achievement of CNF-filled CHI hydrogels, biomaterial-based implants were designed to restore damaged/degenerated discs. The structural, mechanical and biological properties of the developed hydrogel composites were investigated. The neutralization of weakly acidic aqueous CNF/CHI viscous suspensions in NaOH yielded composites of physical hydrogels in which the cellulose nanofibers reinforced the CHI matrix, as investigated by means of microtensile testing under controlled humidity. We assessed the suitability of the achieved biomaterials for intervertebral disc tissue engineering in ex vivo experiments using spine pig models. Cellulose nanofiber-filled chitosan hydrogels can be used as implants in AF tissue defects to restore IVD biomechanics and constitute contention patches against disc nucleus protrusion while serving as support for IVD regeneration.



Sign in / Sign up

Export Citation Format

Share Document