scholarly journals Photonic Crystals: Shaping the Flow of Thermal Radiation

2009 ◽  
Vol 1162 ◽  
Author(s):  
Ivan Čelanović ◽  
Michael Ghebrebrhan ◽  
Yi Xiang Yeng ◽  
John Kassakian ◽  
Marin Soljačić ◽  
...  

AbstractIn this paper we explore theory, design, and fabrication of photonic crystal (PhC) based selective thermal emitters. In particular, we focus on tailoring spectral and spatial properties by means of resonant enhancement in PhC's. Firstly, we explore narrow-band resonant thermal emission in photonic crystals exhibiting strong spectral and directional selectivity. We demonstrate two interesting designs based on resonant Q-matching: a vertical cavity enhanced resonant thermal emitter and 2D silicon PhC slab Fano-resonance based thermal emitter. Secondly, we examine the design of 2D tungsten PhC as a broad-band selective emitter. Indeed, based on the resonant cavity coupled resonant modes we demonstrate a highly selective, highly-spectrally efficient thermal emitter. We show that an emitter with a photonic cut-off anywhere from 1.8 μm to 2.5 μm can be designed.

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1032 ◽  
Author(s):  
Gerald Pühringer ◽  
Bernhard Jakoby

In this work we propose and evaluate a concept for a selective thermal emitter suitable for monolithic on-chip integration suitable for fabrication by conventional CMOS-compatible processes. The concept is based on our recently presented work on vertical-cavity enhanced resonant thermal emission (VERTE). Here we present the application of this concept to a slab waveguide structure, instead of depositing extended dielectric layers forming a one-dimensional photonic crystal. We optimize the dimension by certain design considerations and geneticalgorithm optimization and demonstrate effective absorbing/emitting properties (depending on different slab heights) of such a low-cost structure by exciting so-called optical Tamm-states on the metal-dielectric interface.


Author(s):  
Azka Umar ◽  
Chun Jiang

This paper focuses on manipulating thermal emission and radiation loss of heat energy in a heat waveguide. A One-Dimensional Photonic Crystal is used as a waveguide clad to prohibit the thermal emission from escaping. The model may reduce the radiation loss of heat energy in the waveguide core, and heat energy can be confined to propagate along the waveguide’s longitude axis. The waveguide clad comprises alternative layers of high and low refractive index materials containing sufficient electromagnetic stop bands to trap the thermal emission from escaping out of the waveguide. The numerical simulation of the model shows that the forbidden bandgap of photonic crystal structures with alternative layers of silica and silicon has width enough to make heat energy be confined within the waveguide core so that efficient heat energy transmission can be achieved along the longitude axis of the waveguide.


2019 ◽  
Vol 92 (3) ◽  
Author(s):  
Yifan He ◽  
Liang Guo ◽  
Jincheng Li ◽  
Yihang Chen ◽  
Chengping Yin

1999 ◽  
Vol 193 ◽  
pp. 348-349
Author(s):  
Sean M. Dougherty

Radio observations of Wolf-Rayet stars currently available in the literature are examined to determine whether binarity is a common feature of WR systems with non-thermal emission. Among 24 stars with observed spectral index values, seven are definite non-thermal emitters, and six others possibly have composite thermal/non-thermal spectra. Stellar companions have been identified in 71% of the non-thermal emitters, strongly supporting a link between non-thermal emission and binarity.


Sign in / Sign up

Export Citation Format

Share Document