Latent Patterned Surface Metallization of Silver Ion-Doped Polyimide Films

2009 ◽  
Vol 1192 ◽  
Author(s):  
Luke M. Davis ◽  
Tyler S. Stukenbroeker ◽  
Christopher J. Abelt ◽  
Joseph L. Scott ◽  
Evguenia Orlova ◽  
...  

AbstractA straightforward ambient temperature route to the fabrication of surface silver-metallized polyimide films is described. Silver(I) trifluoromethane sulfonate and a polyimide, derived from 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and an equimolar amount of 4,4'-oxydianiline (ODA) and 3,5-diaminobenzoic acid (DABA), were dissolved together in dimethylacetamide. Silver(I)-doped films were prepared at thicknesses of 25-50 microns and depleted of solvent by evaporation. The silver(I)-containing films were then treated with aqueous reducing agents, which brought forth silvered films exhibiting conductivity on the order of bulk polycrystalline silver and good specular reflectivity.

2016 ◽  
Vol 4 (3) ◽  
pp. 861-868 ◽  
Author(s):  
M. Marple ◽  
D. C. Kaseman ◽  
S. Kim ◽  
S. Sen

Homogeneous Ag–Ga–Ge selenide glasses display fast silver ion conduction at ambient temperature.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
S.W. French ◽  
N.C. Benson ◽  
C. Davis-Scibienski

Previous SEM studies of liver cytoskeletal elements have encountered technical difficulties such as variable metal coating and heat damage which occurs during metal deposition. The majority of studies involving evaluation of the cell cytoskeleton have been limited to cells which could be isolated, maintained in culture as a monolayer and thus easily extracted. Detergent extraction of excised tissue by immersion has often been unsatisfactory beyond the depth of several cells. These disadvantages have been avoided in the present study. Whole C3H mouse livers were perfused in situ with 0.5% Triton X-100 in a modified Jahn's buffer including protease inhibitors. Perfusion was continued for 1 to 2 hours at ambient temperature. The liver was then perfused with a 2% buffered gluteraldehyde solution. Liver samples including spontaneous tumors were then maintained in buffered gluteraldehyde for 2 hours. Samples were processed for SEM and TEM using the modified thicarbohydrazide procedure of Malich and Wilson, cryofractured, and critical point dried (CPD). Some samples were mechanically fractured after CPD.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
Robert C. Rau

Previous work has shown that post-irradiation annealing, at temperatures near 1100°C, produces resolvable dislocation loops in tungsten irradiated to fast (E > 1 MeV) neutron fluences of about 4 x 1019 n/cm2 or greater. To crystallographically characterize these loops, tilting experiments were carried out in the electron microscope on a polycrystalline specimen which had been irradiated to 1.5 × 1021 n/cm2 at reactor ambient temperature (∼ 70°C), and subseouently annealed for 315 hours at 1100°C. This treatment produced large loops averaging 1000 Å in diameter, as shown in the micrographs of Fig. 1. The orientation of this grain was near (001), and tilting was carried out about axes near [100], [10] and [110].


Author(s):  
J. J. Laidler

The presence of three-dimensional voids in quenched metals has long been suspected, and voids have indeed been observed directly in a number of metals. These include aluminum, platinum, and copper, silver and gold. Attempts at the production of observable quenched-in defects in nickel have been generally unsuccessful, so the present work was initiated in order to establish the conditions under which such defects may be formed.Electron beam zone-melted polycrystalline nickel foils, 99.997% pure, were quenched from 1420°C in an evacuated chamber into a bath containing a silicone diffusion pump fluid . The pressure in the chamber at the quenching temperature was less than 10-5 Torr . With an oil quench such as this, the cooling rate is approximately 5,000°C/second above 400°C; below 400°C, the cooling curve has a long tail. Therefore, the quenched specimens are aged in place for several seconds at a temperature which continuously approaches the ambient temperature of the system.


Sign in / Sign up

Export Citation Format

Share Document