Development of Ferroelectric Data Storage Test System for High-Density and High-speed Read/Write

2009 ◽  
Vol 1199 ◽  
Author(s):  
Yoshiomi Hiranaga ◽  
Kenkou Tanaka ◽  
Tomoya Uda ◽  
Yuichi Kurihashi ◽  
Yasuhiro Kimoto ◽  
...  

AbstractIn this study, we have developed ferroelectric data storage test systems based on scanning nonlinear dielectric microscopy (SNDM) to conduct various experiments concerning read/write capability. Nanodomain formation on ferroelectric recording media was studied using the data storage test system. A nanodomain dot array was successfully written on a single-crystal LiTaO3 recording medium. The diameter of the written dot was as small as 7 nm. Epitaxial-thin-film LiTaO3 recording media were also developed. Nanodomain dots with the diameter of 25 nm were written on the thin-film recording medium. In addition, a non-contact probe-height control technique was adopted to solve the problem of tip abrasion using higher-order nonlinear dielectric response detection method. Finally, a hard-disk-drive (HDD)-type ferroelectric data storage test system was developed for conducting read/write tests under conditions close to those of actual operation. Capabilities of reading at the bit rate of 2 Mbps and writing at the bit rate of 20 Mbps were confirmed using the HDD-type data storage test system.

2003 ◽  
Vol 803 ◽  
Author(s):  
Myung-Jin Kang ◽  
Chan-Gyung Park ◽  
Se-Young Choi

ABSTRACTWe present the results of optical properties of multi layer thin films as in the media of phase change optical disk data storage. Reflectance and optical contrast of multi layer thin films increased rapidly between 100 °C and 150 °C. Moreover, optical contrasts at different wavelength were also studied. The refractive index and the optical band gap decreased, while the extinction coefficient increases as the crystallization occurs. The Egopt of crystalline thin film was ∼0.6 eV lower than that of amorphous thin film. Egopt decreased as the number of stacked layer increased.


2014 ◽  
Vol 70 (a1) ◽  
pp. C148-C148
Author(s):  
Stephen Lister ◽  
Vikash Venkataramana ◽  
Thomas Thomson ◽  
Joachim Kohlbrecher ◽  
Ken Takano ◽  
...  

The study of thin film magnetic systems that are structured on the nanoscale is an area of intense interest. Small-angle neutron scattering is an extremely powerful probe of nanomagnetism in the bulk, but in thin-film systems the experiments are challenging due both to the small scattering volume available and also to scattering from other sources such as the substrate and sample environment. We have demonstrated that such experiments are however possible in magnetic films as thin as 10 nm. A good example to illustrate this is the case of perpendicular magnetic recording media. These materials are found in all modern magnetic hard drives, the data storage technology that continues to be of tremendous commercial and technological importance. These media are advanced functional multilayered materials, containing an active recording layer of only around 10 nm in thickness. This recording layer is compositionally segregated into 8 nm-sized grains of a magnetic CoCrPt alloy separated by a thin oxide shell, typically SiO2. These media have their magnetic moments oriented perpendicular to the plane of the film. Determining the local magnetic structure and reversal behavior is key to understanding the performance of perpendicular media in recording devices. Polarised SANS has proved to be a very effective tool to measure these materials at a sub-10nm length scales. The signal of interest must however also be distinguished from the scattering from other layers in the structure, some of which are also magnetic. We will present a summary of some recent results on recording media, including measurements of the grain-sized dependent switching with and without the presence of an exchange spring. We will also briefly mention experiments that demonstrate the viability of extending this approach to measurement for lithographically defined structures similar to those for application in bit-patterned media, including 2d artificial spin-ice and structurally glassy arrays.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhi Li

With the wide application of science and technology in the field of weapons, shock wave is an important breakthrough point in weapon research, and the storage and testing system of shock wave is a breakthrough point that people pay most attention to at present. Shock wave data storage has the characteristics of large scale, complex structure, low cost efficiency, and strong timeliness. This paper mainly studies the design of shock wave storage test system with variable parameters based on numerical piezoelectric circuit sensor. Based on fluid dynamics simulation theory and numerical simulation method, the normal and concave-convex three-dimensional models of two pressure measuring devices are constructed by using the flow waveform of calculator, and then, the network is divided. The results show that, under the same inlet pressure, the larger the bulge or depression value, the greater the influence on the experimental results. The influence of disk is 10% higher than that of pen, and the change rate of relative difference is increased by 1.5% with the increase of concave-convex value. Finally, experiments are carried out in different environments to verify the reliability, survivability, and flexibility. The shock wave storage test system is optimized when the parameters of the digital voltage circuit sensor are variable.


Author(s):  
Alfred Baltz

As part of a program to develop iron particles for next generation recording disk medium, their structural properties were investigated using transmission electron microscopy and electron diffraction. Iron particles are a more desirable recording medium than iron oxide, the most widely used material in disk manufacturing, because they offer a higher magnetic output and a higher coercive force. The particles were prepared by a method described elsewhere. Because of their strong magnetic interaction, a method had to be developed to separate the particles on the electron microscope grids.


Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 81
Author(s):  
Ramón Gutiérrez-Castrejón ◽  
Md Ghulam Saber ◽  
Md Samiul Alam ◽  
Zhenping Xing ◽  
Eslam El-Fiky ◽  
...  

We present a systematic comparison of PAM-2 (NRZ), Duobinary-PAM-2, PAM-4, and Duobinary-PAM-4 (duo-quaternary) signaling in the context of short-reach photonic communications systems using a Mach–Zehnder modulator as transmitter. The effect on system performance with a relaxed and constrained system’s opto-electronic bandwidth is analyzed for bit rates ranging from 20 to 116 Gb/s. In contrast to previous analyses, our approach employs the same experimental and simulation conditions for all modulation formats. Consequently, we were able to confidently determine the performance limits of each format for particular values of bit rate, system bandwidth, transmitter chirp, and fiber dispersion. We demonstrate that Duobinary-PAM-4 is a good signaling choice only for bandwidth-limited systems operating at relatively high speed. Otherwise, PAM-4 represents a more sensible choice. Moreover, our analysis put forward the existence of transition points: specific bit rate values where the BER versus bit rate curves for two different formats cross each other. They indicate the bit rate values where, for specific system conditions, switching from one modulation to another guarantees optimum performance. Their existence naturally led to the proposal of a format-selective transceiver, a component that, according to network conditions, operates with the most adequate modulation format. Since all analyzed modulations share similar implementation details, signaling switching is achieved by simply changing the sampling point and threshold count at the receiver, bringing flexibility to IM/DD-based optical networks.


2020 ◽  
Vol 41 (2) ◽  
pp. 160-168
Author(s):  
I. A. Rastegaev ◽  
I. I. Rastegaeva ◽  
D. L. Merson ◽  
V. A. Korotkov

Sign in / Sign up

Export Citation Format

Share Document