Laboratory Experiments of Mass Transfer in the London Clay

1988 ◽  
Vol 127 ◽  
Author(s):  
P. J. Bourke ◽  
D. Gilling ◽  
N. L. Jefferies ◽  
D. A. Lever ◽  
T. R. Lineham

ABSTRACTAqueous phase mass transfer through the rocks surrounding a radioactive waste repository will take place by diffusion and convection. This paper presents a comprehensive set of measurements of the mass transfer characteristics for a single, naturally occurring, clay. These data have been compared with the results predicted by mathematical models of mass transport in porous media, in order to build confidence in these models.

Author(s):  
Lalit M. Pant ◽  
Marc Secanell ◽  
Sushanta K. Mitra

Study of gas diffusion is critical in understanding the process of mass transfer in porous media, which is an integral part of polymer electrolyte membrane fuel cells (PEMFCs). An experimental method is presented to study the mass transfer processes in micro-nano capillaries, which is further extended to study the transport in the porous media of fuel cells. A diffusion bridge setup, similar to the one presented by Remick and Geankoplis [1] has been used. The experimental setup facilitates the study of binary and multicomponent mixture transport through micro-nano capillaries and porous media. The setup can perform studies for two cases viz., pure diffusion and convection-diffusion. Using pressure controls in both channels, the pressure gradient across the capillaries is varied to study the convection diffusion process in detail. The results obtained from the study will be used to review various models of mass transport available in literature.


2021 ◽  
Vol 273 ◽  
pp. 01023
Author(s):  
Ludmila Larina ◽  
Dmitryi Ruslyakov ◽  
Olga Tikhonova ◽  
Boris Kalmykov

On the basis of a synergetic approach, mathematical models of the stochastic similarity of the functioning of heat and mass transfer processes in porous media (grain materials) have been developed. In these models, the indicators of the stochastic characteristics of these media are combined with the parameters of the processes of hygrothermal treatment under vacuum conditions: residual pressure - P, temperature - T, time-τ, with a density of couple - ρ. The resulting models can be used to control hygrothermal processes in the processing of natural tanning and grain materials that have a stochastic character of the building. A method for the formation of mathematical models of stochastic similarity has been developed, including functional dependences of indicators of stochastic characteristics of materials subjected to hygrothermal treatment on parameters characterizing its state: input, setting, disturbing influences and internal (structural) system.


2007 ◽  
Vol 10 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Martin J. Garland ◽  
S. U. Rahman ◽  
K. A. Mahgoub ◽  
Ahmad Nafees

2012 ◽  
Vol 15 (4) ◽  
pp. 329-341 ◽  
Author(s):  
A. Bousri ◽  
Khedidja Bouhadef ◽  
H. Beji ◽  
Rachid Bennacer ◽  
R. Nebbali

Sign in / Sign up

Export Citation Format

Share Document