An Ab-Initio Multicenter Tight-Binding Model for Molecular Dynamics Simulations

1988 ◽  
Vol 141 ◽  
Author(s):  
Otto F. Sankey ◽  
David J. Niklewski

AbstractA new, approximate method has been developed for computing total energies and forces for a variety of applications including molecular dynamics simulations of covalent materials. The method is tight-binding-like and is based on the local density approximation within the pseudopotential scheme. Slightly excited pseudo-atomic-orbitals are used, and the tight-binding Hamiltonian matrix is obtained in real space. The method is used to find the total energies for five crystalline phases of Si and the Si 2 molecule. Excellent agreement is found with experiment. A molecular dynamics simulated annealing study has been performed on the Si 3 molecule to determine the ground state configuration.

1997 ◽  
Vol 491 ◽  
Author(s):  
Leo Miglio ◽  
Francesca Tavazza ◽  
Antonio Garbelli ◽  
Massimo Celino

ABSTRACTWe point out that the predictive power of tight binding potentials is not limited to obtaining fairly accurate total energy calculations and very satisfactory structural evolutions by molecular dynamics simulations. They also allow for a nice physical picture of the links between bonding and stability in different structures, which is particularly helpful in the case of binary suicides


1996 ◽  
Vol 360 (1-3) ◽  
pp. 221-228 ◽  
Author(s):  
K. Stokbro ◽  
K.W. Jacobsen ◽  
J.K. Nørskov ◽  
D.M. Deaven ◽  
C.Z. Wang ◽  
...  

1995 ◽  
Vol 396 ◽  
Author(s):  
M. tang ◽  
L. colombo ◽  
T. Diaz De La Rubia

AbstractTight-binding molecular dynamics (TBMD) simulations are performed (i) to evaluate the formation and binding energies of point defects and defect clusters, (ii) to compute the diffusivity of self-interstitial and vacancy in crystalline silicon, and (iii) to characterize the diffusion path and mechanism at the atomistic level. In addition, the interaction between individual defects and their clustering is investigated.


2021 ◽  
Author(s):  
Sayan Maity ◽  
Vangelis Daskalakis ◽  
Marcus Elstner ◽  
Ulrich Kleinekathöfer

Photosynthetic processes are driven by sunlight. Too little of it and the photosynthetic machinery cannot produce the reductive power to drive the anabolic pathways. Too much sunlight and the machinery can get damaged. In higher plants, the major Light Harvesting Complex (LHCII) efficiently absorbs the light energy, but can also dissipate it when in excess (quenching). In order to study the dynamics related to the quenching process but also the exciton dynamics in general, one needs to accurately determine the so-called spectral density which describes the coupling between the relevant pigment modes and the environmental degrees of freedom. To this end, Born–Oppenheimer molecular dynamics simulations in a quantum mechanics/molecular mechanics (QM/MM) fashion utilizing the density functional based tight binding (DFTB) method have been performed for the ground state dynamics. Subsequently, the time-dependent extension of the long-range-corrected DFTB scheme has been employed for the excited state calculations of the individual chlorophyll-a molecules in the LHCII complex. The analysis of this data resulted in spectral densities showing an astonishing agreement with the experimental counterpart in this rather large system. This consistency with an experimental observable also supports the accuracy, robustness, and reliability of the present multi-scale scheme. In addition, the resulting spectral densities and site energies were used to determine the exciton transfer rate within a special pigment pair consisting of a chlorophyll-a and a carotenoid molecule which is assumed to play a role in the balance between the light harvesting and quenching modes.


1992 ◽  
Vol 291 ◽  
Author(s):  
C. Z. Wang ◽  
K. M. Ho ◽  
C. T. Chan

ABSTRACTTight-binding molecular-dynamics simulations are performed to study the structure of liquid and amorphous carbon. Comparisons of our results with ab initiomolecular dynamics (Car-Parrinello) results and experimental data show that the scheme has sufficient accuracy and efficiency for realistic simulation study of the structural properties of complex carbon systems.


Sign in / Sign up

Export Citation Format

Share Document