The Effects of Ion Energy on Carbon and Tungsten Films Fabricated by Direct Ion Beam Deposition and Ion Beam Sputtering Deposition

1991 ◽  
Vol 223 ◽  
Author(s):  
I. Kataoka ◽  
K. Ito ◽  
N. Hoshi ◽  
T. Yonemitsu ◽  
K. Etoh ◽  
...  

ABSTRACTThe x-ray reflectivity and surface morphology of C/W multilayers fabricated by ion beam sputtering (IBS) method was evaluated. Also the surface roughness and amorphous structure of C and W films fabricated by direct ion beam deposition (DIBD) method were evaluated as a function of ion energy. The reflectivity was measured by the C-K line (4.47nm) and STM was used for surface roughness measurement and root-mean-square value of correlation function of the RHEED pattern was used for evaluation of amorphous structure. The reflectivity of C/W multilayer was about 69% of the theoretical one, and micro-columnar structures were observed from STM images. The film structure and surface roughness of DIBD film were changed with the depositing ion energy. The surface roughness of films becomes smaller as the depositing energy becomes higher in the energy range from 20 to 140eV.

1993 ◽  
Vol 316 ◽  
Author(s):  
Xiaoming He ◽  
Hongwei Song ◽  
Wenzhi Li ◽  
Fuzhai Cui ◽  
Hengde Li ◽  
...  

ABSTRACTDiamondlike carbon-nitrogen films on silicon (111) wafer and tungsten carbide plates have been prepared by using dual ion beam sputtering deposition and simultaneous bombardment by N+ with energies of 100-800 eV at room temperature. These films retain their diamondlike characteristics. However, as the nitrogen content increases from 10% at to 20% at., the Auger electron spectroscopy spectra of films change obviously in fine structure and the main Cls peak of carbon atoms in the X-ray photoelectron spectroscopy spectra shifts to 285.65 eV. The maximum hardness of these films on tungsten carbide plates is about 5260 kg/mm2. The films have an amorphous structure and smooth surface. The state of nitrogen in films and its influence on the structure and properties of films are discussed.


1993 ◽  
Vol 316 ◽  
Author(s):  
Xiao-Ming He ◽  
Wen-Zhi Li ◽  
Heng-De Li

ABSTRACTDiamond-like carbon films have been prepared by using dual ion beam sputtering deposition under CH++Ne+ bombardment with energies 50–800 eV. The obtained films possess a smooth surface and an amorphous structure containing some sp3 bondings. DLC films bombarded by low energy CH++Ne+ exhibit the relatively high binding energy and electrical resistivity which are approximate to those of diamond. It is believed that a Mo interlayer between AISI 52100 steel substrates and DLC films brings the films good adhesion. This offers promises to DLC films on bearing steel to perform a stable wearing in much lower friction coefficient (<0.1) under large wear loads (30–90N). Experimentally, low wear coefficients and high anti wear numbers obtained prove that the DLC films indeed possess excellent wear resistance. In addition, the speed or the momentum of friction motion was revealed to exert some serious effects upon the wear resistance of DLC films when the wearing was carried out under very high wear load (> 30 N).


2011 ◽  
Vol 148-149 ◽  
pp. 54-57
Author(s):  
Xiao Ping Lin ◽  
Yun Dong ◽  
Lian Wei Yang

The Al2O3 nano-films of different thicknesses (1~100nm) were successfully deposited on the monocrystalline Si surface by using ion beam sputtering deposition. The surface topography and the component of nano-films with different thickness were analyzed. The quality of the surface of nano-films was systematically studied. When the films’ thickness increase, the studies by atomic force microscope (AFM), X-ray photoelectron spectrum(XPS) show that the gathering grain continually grows up and transits from acerose cellula by two-dimensional growth to globularity by three-dimensional growth. The elements O, Al and Si were found on the surface of Al2O3 nano-films. With the thickness of the films increasing, the content of Al gradually increases and the intensity peak of Si wears off, the surface quality of the deposited films is ceaselessly improved


2000 ◽  
Author(s):  
JinCherng Hsu ◽  
Cheng-chung Lee ◽  
LuuGen Hwa

2007 ◽  
Vol 61 (14-15) ◽  
pp. 2855-2858 ◽  
Author(s):  
J.P. Rivière ◽  
D. Texier ◽  
J. Delafond ◽  
M. Jaouen ◽  
E.L. Mathé ◽  
...  

1997 ◽  
Vol 498 ◽  
Author(s):  
K. F. Chan ◽  
X.-A. Zhao ◽  
C. W. Ong

ABSTRACTCNx films were deposited using pulsed laser deposition (PLD) and ion beam deposition (IBD). The PLD films deposited at substrate temperature Ts = 25°C and high N2 partial pressure have the highest N content (fN) and polymerlike structure, accompanied by large band gap (Eg) and low electrical conductivity (σroom). The rise in Ts lowers fN and induces graphitization of the film structure, so Eg reduces and σroom increases. IBD (with and without N2+ assist) films are graphitic. Higher Ts further enhances the graphitization of the film structure, such that the conduction and valence bands overlap, and σroom approaches to that of graphite. No evidence was found to show successful formation of the hypothetical β-C3N4 phase in the films.


2010 ◽  
Vol 443 ◽  
pp. 465-468
Author(s):  
Pei Quan Guo ◽  
Shou Ren Wang ◽  
Huan Yong Cui

The study reports a new surface formation technology during manufacturing process of parallel indexing cam mechanism, ion beam sputtering deposition, in which the operation temperature can be controlled below the limitation of phases exchanging or at room temperature. Phase exchanging deformation can be avoided and the shape accuracy and dimension accuracy can be improved compared with surface quenching process. The microstructure and properties of TiAlN/AlN composite film deposited on the profile surface of cam (made of 45 steel) by ion beam sputtering deposition were discussed. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM) analysis has been used to characterize film’s microstructure and properties. The micro-hardness and adherence grade were tested.


2021 ◽  
Vol 61 (03) ◽  
Author(s):  
Jinlin Bai ◽  
Huasong Liu ◽  
Yugang Jiang ◽  
Lishuan Wang ◽  
Xiao Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document