Composite Thermoelectrics - Exact Results and Calculational Methods

1991 ◽  
Vol 234 ◽  
Author(s):  
David J. Bergman ◽  
Ohad Levy

ABSTRACTA theoretical study of composite thermoelectric media has resulted in the development of a number of simple approximations, as well as some exact results. The latter include exact upper and lower bounds on the bulk effective thermoelectric transport coefficients of the composite and upper bounds on the bulk effective thermoelectric quality factor Ze. In particular, as a result of some exact theorems and computer simulations we conclude that Ze can never be greater than the largest value of Z in the different components that make up the composite.

2020 ◽  
Vol 17 (1) ◽  
pp. 95-115
Author(s):  
Sergey Vakarchuk ◽  
Mihail Vakarchuk

For the classes of functions of two variables $W_2(\Omega_{m,\gamma},\Psi)=\{ f \in L_{2,\gamma}(\mathbb{R}^2) : \Omega_{m,\gamma}(f,t) \leqslant \Psi(t) \, \forall t \in (0,1)\}$, $m \in \mathbb{N}$, where $\Omega_{m,\gamma}$ is a generalized modulus of continuity of the $m$-th order, and $\Psi$ is a majorant, the upper and lower bounds for the ortho-, Kolmogorov, Bernstein, projective, Gel'fand, and linear widths in the metric of the space $L_{2,\gamma}(\mathbb{R}^2)$ are found. The condition for a majorant under which it is possible to calculate the exact values of the listed extreme characteristics of the optimization content is indicated. We consider the similar problem for the classes $W^{r,0}_2(\Omega_{m,\gamma},\Psi)=L^{r,0}_{2,\gamma}(D,\mathbb{R}^2) \cap W^r_2(\Omega_{m,\gamma},\Psi)$, $r,m \in \mathbb{N}$, $\big(D=\frac{\displaystyle \partial^2}{\displaystyle \partial x^2} + \frac{\displaystyle \partial^2}{\displaystyle \partial y^2} -2x\frac{\displaystyle \partial}{\displaystyle \partial x} -2y\frac{\displaystyle \partial}{\displaystyle \partial y}$ being the differential operator$\big)$. Those classes consist of functions $f \in L^{r,0}_{2,\gamma}(\mathbb{R}^2)$ whose Fourier--Hermite coefficients are $c_{i0}(f) = c_{0j}(f)=c_{00}(f)=0$ $\forall i, j \in \mathbb{N}$. The $r$-th iterations $D^rf = D(D^{r-1}f)$ $(D^0f \equiv f)$ belong to the space $L_{2,\gamma}(\mathbb{R}^2)$ and satisfy the inequality $\Omega_{m,\gamma}(D^rf,t) \leqslant \Psi(t)$ $\forall t \in (0,1)$. On the indicated classes, we have determined the upper bounds (including the exact ones) for the Fourier--Hermite coefficients. The exact results obtained are specified, and a number of comments regarding them are given.


2020 ◽  
Vol 26 (2) ◽  
pp. 131-161
Author(s):  
Florian Bourgey ◽  
Stefano De Marco ◽  
Emmanuel Gobet ◽  
Alexandre Zhou

AbstractThe multilevel Monte Carlo (MLMC) method developed by M. B. Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56 2008, 3, 607–617] has a natural application to the evaluation of nested expectations {\mathbb{E}[g(\mathbb{E}[f(X,Y)|X])]}, where {f,g} are functions and {(X,Y)} a couple of independent random variables. Apart from the pricing of American-type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of initial margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotic optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal-dual algorithms for stochastic control problems.


10.37236/1525 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Yair Caro ◽  
Raphael Yuster

For a graph $G$ whose degree sequence is $d_{1},\ldots ,d_{n}$, and for a positive integer $p$, let $e_{p}(G)=\sum_{i=1}^{n}d_{i}^{p}$. For a fixed graph $H$, let $t_{p}(n,H)$ denote the maximum value of $e_{p}(G)$ taken over all graphs with $n$ vertices that do not contain $H$ as a subgraph. Clearly, $t_{1}(n,H)$ is twice the Turán number of $H$. In this paper we consider the case $p>1$. For some graphs $H$ we obtain exact results, for some others we can obtain asymptotically tight upper and lower bounds, and many interesting cases remain open.


2012 ◽  
Vol 29 (3) ◽  
pp. 642-658 ◽  
Author(s):  
Benedikt M. Pötscher

Upper and lower bounds on the order of magnitude of $\sum\nolimits_{t = 1}^n {\lefttnq#x007C; {x_t } \righttnq#x007C;^{ - \alpha } } $, where xt is an integrated process, are obtained. Furthermore, upper bounds for the order of magnitude of the related quantity $\sum\nolimits_{t = 1}^n {v_t } \lefttnq#x007C; {x_t } \righttnq#x007C;^{ - \alpha } $, where vt are random variables satisfying certain conditions, are also derived.


Author(s):  
Krishnendu Chatterjee ◽  
Hongfei Fu ◽  
Amir Goharshady ◽  
Nastaran Okati

We consider the stochastic shortest path (SSP) problem for succinct Markov decision processes (MDPs), where the MDP consists of a set of variables, and a set of nondeterministic rules that update the variables. First, we show that several examples from the AI literature can be modeled as succinct MDPs. Then we present computational approaches for upper and lower bounds for the SSP problem: (a) for computing upper bounds, our method is polynomial-time in the implicit description of the MDP; (b) for lower bounds, we present a polynomial-time (in the size of the implicit description) reduction to quadratic programming. Our approach is applicable even to infinite-state MDPs. Finally, we present experimental results to demonstrate the effectiveness of our approach on several classical examples from the AI literature.


2020 ◽  
Vol 36 (36) ◽  
pp. 124-133
Author(s):  
Shinpei Imori ◽  
Dietrich Von Rosen

The Moore-Penrose inverse of a singular Wishart matrix is studied. When the scale matrix equals the identity matrix the mean and dispersion matrices of the Moore-Penrose inverse are known. When the scale matrix has an arbitrary structure no exact results are available. The article complements the existing literature by deriving upper and lower bounds for the expectation and an upper bound for the dispersion of the Moore-Penrose inverse. The results show that the bounds become large when the number of rows (columns) of the Wishart matrix are close to the degrees of freedom of the distribution.


1967 ◽  
Vol 9 (2) ◽  
pp. 149-156 ◽  
Author(s):  
G. Fauconneau ◽  
W. M. Laird

Upper and lower bounds for the eigenvalues of uniform simply supported beams carrying uniformly distributed axial load and constant end load are obtained. The upper bounds were calculated by the Rayleigh-Ritz method, and the lower bounds by a method due to Bazley and Fox. Some results are given in terms of two loading parameters. In most cases the gap between the bounds over their average is less than 1 per cent, except for values of the loading parameters corresponding to the beam near buckling. The results are compared with the eigenvalues of the same beam carrying half of the distributed load lumped at each end. The errors made in the lumping process are very large when the distributed load and the end load are of opposite signs. The results also indicate that the Rayleigh-Ritz upper bounds computed with the eigenfunctions of the unloaded beam as co-ordinate functions are quite accurate.


2012 ◽  
Vol 407 (7) ◽  
pp. 1114-1118 ◽  
Author(s):  
Rui-zhi Zhang ◽  
Xiao-yun Hu ◽  
Ping Guo ◽  
Chun-lei Wang

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xian-Ming Gu ◽  
Ting-Zhu Huang ◽  
Wei-Ru Xu ◽  
Hou-Biao Li ◽  
Liang Li ◽  
...  

Recently, extensive researches on estimating the value ofehave been studied. In this paper, the structural characteristics of I. Schur type inequalities are exploited to generalize the corresponding inequalities by variable parameter techniques. Some novel upper and lower bounds for the I. Schur inequality have also been obtained and the upper bounds may be obtained with the help ofMapleand automated proving package (Bottema). Numerical examples are employed to demonstrate the reliability of the approximation of these new upper and lower bounds, which improve some known results in the recent literature.


Sign in / Sign up

Export Citation Format

Share Document