Synthesis of Transition Metal Clusters and Their Catalytic and Optical Properties

1992 ◽  
Vol 286 ◽  
Author(s):  
J. P. Wilcoxon ◽  
A. Martino ◽  
R.L. Baughmann ◽  
E. Klavetter ◽  
A.P. Sylwester

ABSTRACTMetal Clusters may be synthesized in the interior of surfactant aggregates called inverse micelles. These nanosize chemical reactors permit the controlled growth of several types of metal clusters. We describe this process for the formation of Au, Ag, Pd, Pt and Ir clusters and cluster alloys. Two size-control strategies are described: 1)variation of micelle size by alteration of the surfacant and/or solvent combination used, and 2) judicious use of micelle interactions or phase behavior. Using these two methods size control in the range of 1-100 nm is possible. The optical properties of metal clusters of gold, silver, and gold/silver alloys are described and the surface plasmon resonances are shown to have dramatic blue shifts and extensive line broadening with decreasing size in the range of 10-1 nm. In the case of gold clusters, the distinct resonancein the visible disappears for sizes less than 2.0 nm and new features appear in the UV. The optical spectra of alloys of gold and silver are shown to differ dramatically from their homoatomic counterparts of the same average size. We use electron and X-ray diffraction to determine the phase structure of the metal clusters and small angle X-ray scattering, neutron scattering, light scattering and TEM to characterize the average size and size distributions of these clusters. Finally, we describe measurements of the catalytic activity of Pd clusters and demonstrate a dramatic increase in hydrogenation activity on the size range of 2-10 nm.

1990 ◽  
Vol 206 ◽  
Author(s):  
Donald M. Cox ◽  
Barbara Kessler ◽  
Pierre Fayet ◽  
Wolfgang Eberhardt ◽  
Rex D. Sherwood ◽  
...  

ABSTRACTUsing high energy rare gas ion sputtering of metal targets, we are able to produce nanoamps of mass selected transition metal clusters. Mono-sized cluster ions are deposited at low kinetic energy upon substrates, e.g. silica or carbon, and are then characterized using UV and x-ray photoemission. In this paper we will discuss photoemission measurements of the 4f7/2 core level energies of Au (1–5,7 atom samples) clusters deposited on silica. From such studies we are beginning to understand how electronic structure, cluster stability and mobility depend on (deposited) cluster size, surface coverage, and substrate temperature.


1996 ◽  
Vol 74 (6) ◽  
pp. 1021-1031 ◽  
Author(s):  
Krisztina L. Malisza ◽  
Lijuan Li ◽  
Michael J. McGlinchey

Molecular orbital calculations at the extended Hückel level are used to rationalize the barriers to vertex rotation in the tetrahedral metal cluster complexes FeCo2(CO)9S, 2, and (C5H5)MoCo2(CO)8CH, 3. It is shown that, in accord with experimental observations on 2, rotation of an Fe(CO)3 fragment through 60° brings about a weakening of the metal–metal bonding interactions within the FeCo2 triangle. In the MoCo2 cluster, 3, rotation of the CpMo(CO)2 fragment about an axis joining the molybdenum to a central point within the tetrahedron gives rise to three minima in which the cyclopentadienyl ring is oriented proximal or distal relative to the capping carbynyl moiety, or in the plane of the three metals. The rotation trajectory of the CpMo(CO)2 vertices in Cp2Mo2(CO)4(HC≡CH), 4, has been elucidated by means of a Bürgi–Dunitz analysis of the X-ray crystal structures of a series of related clusters in which the CpMo(CO)2 units exhibit a range of orientations. The calculations suggest that the barriers to vertex rotations in 4 are primarily of steric rather than electronic origin. Key words: metal clusters, vertex rotations, EHMO calculations.


2014 ◽  
Vol 68 (7) ◽  
Author(s):  
Wanda Ziemkowska ◽  
Dariusz Basiak ◽  
Patrycja Kurtycz ◽  
Agnieszka Jastrzębska ◽  
Andrzej Olszyna ◽  
...  

AbstractNano-titania doped with noble metals (Au/TiO2, Ag/TiO2, Pd/TiO2) has been synthesized by mild hydrolysis of the mixture of metal salts or complexes and titanium isopropoxide ((iPr-O)4Ti). After thermal decomposition of the obtained precursors, nanomaterials were formed. Morphological characterization of the nanomaterials was provided by scanning electron microscopy (SEM) and stereological analysis, determining the BET specific surface area, and BJH nanoporosity (pore volume, pore size). It has been found that the structure of nanomaterials (size of nanoparticles and agglomerates) depended strongly on the method of the (iPr-O)4Ti hydrolysis. A minor dependence on the kind of solvents and precursors of noble metals was observed. The presence of doping metal nanoparticles was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Nanomaterial phases were identified by X-ray diffraction (XRD). According to the XRD patterns, Ag/TiO2 and Pd/TiO2 products with doping metals in their oxidized form contain Ag-Ti and Pd-Ti phases. Peaks of the metal oxides Ag2O and PdO are absent in the XRD patterns. The average size of TiO2 nanoparticles is situated in the region of 20–60 nm, whereas metals are present as about 10–15 nm sized particles and fine nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document