surfactant aggregates
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 21)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
pp. 118276
Author(s):  
Souvik Pandit ◽  
Aloke Bapli ◽  
Debabrata Seth

2021 ◽  
Vol 12 ◽  
Author(s):  
Bing Zhang ◽  
Xiaojun Tian ◽  
Guangqi Li ◽  
Han Zhao ◽  
Xuan Wang ◽  
...  

Methane (CH4) exerted protective effects against lung ischemia-reperfusion (I/R) injury, but the mechanism remains unclear, especially the role of pulmonary surfactant. Therefore, this study aimed to explore the effects of CH4 inhalation on pulmonary surfactant in rat lung I/R injury and to elucidate the mechanism. Rats were randomly divided into three groups (n = 6): the sham, I/R control, and I/R CH4 groups. In the sham group, only thoracotomy was performed on the rats. In the I/R control and I/R CH4 groups, the rats underwent left hilum occlusion for 90 min, followed by reperfusion for 180 min and ventilation with O2 or 2.5% CH4, respectively. Compared with those of the sham group, the levels of large surfactant aggregates (LAs) in pulmonary surfactant, lung compliance, oxygenation decreased, the small surfactant aggregates (SAs), inflammatory response, oxidative stress injury, and cell apoptosis increased in the control group (P < 0.05). Compared to the control treatment, CH4 increased LA (0.42 ± 0.06 vs. 0.31 ± 0.09 mg/kg), oxygenation (201 ± 11 vs. 151 ± 14 mmHg), and lung compliance (16.8 ± 1.0 vs. 11.5 ± 1.3 ml/kg), as well as total antioxidant capacity and Nrf2 protein expression and decreased the inflammatory response and number of apoptotic cells (P < 0.05). In conclusion, CH4 inhalation decreased oxidative stress injury, inflammatory response, and cell apoptosis, and improved lung function through Nrf2-mediated pulmonary surfactant regulation in rat lung I/R injury.


2021 ◽  
Author(s):  
Helena J. Spikes ◽  
Shelby J. Jarrett-Noland ◽  
Stephan M. Germann ◽  
Janet Braddock-Wilking ◽  
Cynthia M. Dupureur

Abstract Sila- and germafluorenes containing alkynyl(aryl) substituents at the 2,7- position are strongly emissive with high quantum yields in organic solvents. Provided they are sufficiently soluble in water, their hydrophobic structures have the potential for many biological and industrial applications in the detection and characterization of lipophilic structures. To that end, the emission behaviors of previously synthesized 2,7- bis[alkynyl(biphenyl)]-9,9-diphenylsilafluorene (1), 2,7- bis[alkynyl(methoxynaphthyl)]-9,9-diphenylgermafluorene (2), 2,7- bis[alkynyl(p-tolyl)]-9,9-diphenylsilafluorene (3), and 2,7- bis[alkynyl(m-fluorophenyl)]-9,9-diphenylsilafluorene (4) were characterized in aqueous solution and in the presence of various surfactants. Despite a high degree of hydrophobicity, all of these metallafluorenes (MFs) are soluble in aqueous solution at low micromolar concentrations and luminesce in a common aqueous buffer. Further, the 2,7 substituent makes the emission behavior tunable (up to 20 nm). Fold emission enhancements in the presence of various surfactants are highest toward Triton X-100 and CTAB (ranging from 5–25 fold) and are lowest for the anionic surfactants SDS and SDBS. These enhancements are competitive with existing probes of surfactants. Quantum yields in buffer range from 0.11 to 0.34, competitive with many common fluorophores in biological use. Strikingly, MF quantum yields in the presence of TX-100 and CTAB approach 100% quantum efficiency. MF anisotropies are dramatically increased only in the presence of TX-100, CTAB, and CHAPS. Coupled with the above data, this suggests that MFs associate with neutral and charged surfactant aggregates. Interactions with the anionic surfactants are weaker and/or leave MFs solvent exposed. These properties make metallafluorenes competitive probes for surfactants and their properties and behaviors, and thus could also have important biological applications.


2021 ◽  
Vol 24 (2) ◽  
pp. 23601
Author(s):  
E. H. Chavez-Martinez ◽  
E. Cedillo-Cruz ◽  
H. Dominguez

Metallic ion adsorption on surfactant aggregates were studied with Molecular dynamics simulations. Using ionic salts, such as lead sulfate (PbSO4) and aluminum sulfate [Al2(SO4)3], adsorption of lead and aluminum were investigated at different salt concentrations and different surfactant aggregates (micelles) sizes. The micelles were constructed with spherical shapes composed of sodium dodecyl sulfate (SDS) anionic surfactants. The electrostatic interactions between the positive ions and the negative SDS headgroups promote capture of the metal particles on the aggregate surface. Metal adsorption was analyzed in terms of radial density profiles, partial pair distribution functions and adsorption isotherms. It is showed that SDS micelles adsorb better lead than aluminum ions regardless of the size of the aggregates and salt concentrations.


Nanoscale ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 371-379
Author(s):  
Erik Bergendal ◽  
Philipp Gutfreund ◽  
Georgia A. Pilkington ◽  
Richard A. Campbell ◽  
Peter Müller-Buschbaum ◽  
...  

Self-assembly of insoluble surfactants imposes curvature restrictions on the air–water interface which leads to 3D nanopatterns that can be deposited onto solid surfaces.


2021 ◽  
Vol 58 (1) ◽  
pp. 44-50
Author(s):  
Yinhua Li ◽  
Zhongyuan Xu ◽  
Mengting Yu ◽  
Zhen Wang ◽  
Weixing Ma ◽  
...  

Abstract In this study, two novel resonance light scattering (RLS) methods were developed for the determination of benzalkonium chloride. These methods were based on the formation of inorganic anionic-surfactant aggregates in a Clark-Lubs medium, which increases the resonance light scattering intensity of the reaction system and were also predominantly divided into sodium tungstate-benzalkonium chloride (method A) or phosphomolybdate-benzalkonium chloride (method B). The detection is performed both at 285 nm. Under the established conditions, the limits of quantification ranged from 0.10 mg L–1 to 1.00 mg L–1 with the R values of 0.9994 and from 0.20 mg · L–1 to 3.20 mg · L–1 with the R values of 0.9991, with good precision and accuracy both for method A and method B. The limits of detection were 0.029 mg · L–1 for method A and 0.013 mg · L–1 for method B. These two methods were successfully applied for the assay of benzalkonium chloride for the first time. All validation parameters were in agreement with the International Conference on Harmonization of Requirements for Registration Pharmaceuticals for Human Use (ICH) guidelines. Compared to the classical spectrophotometric method, these two methods take advantages of rapidity, high efficiency and good selectivity.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 19
Author(s):  
Anjali Sharma ◽  
Marek Bekir ◽  
Nino Lomadze ◽  
Svetlana Santer

Ionic complexation of azobenzene-containing surfactants with any type of oppositely charged soft objects allows for making them photo-responsive in terms of their size, shape and surface energy. Investigation of the photo-isomerization kinetic and isomer composition at a photo-stationary state of the photo-sensitive surfactant conjugated with charged objects is a necessary prerequisite for understanding the structural response of photo-sensitive complexes. Here, we report on photo-isomerization kinetics of a photo-sensitive surfactant in the presence of poly(acrylic acid, sodium salt). We show that the photo-isomerization of the azobenzene-containing cationic surfactant is slower in a polymer complex compared to being purely dissolved in aqueous solution. In a photo-stationary state, the ratio between the trans and cis isomers is shifted to a higher trans-isomer concentration for all irradiation wavelengths. This is explained by the formation of surfactant aggregates near the polyelectrolyte chains at concentrations much lower than the bulk critical micelle concentration and inhibition of the photo-isomerization kinetics due to steric hindrance within the densely packed aggregates.


2020 ◽  
Vol 4 (4) ◽  
pp. 47
Author(s):  
Sara Llamas ◽  
Eduardo Guzmán ◽  
Francisco Ortega ◽  
Ramón G. Rubio

This work explores the association of a pegylated lipid (DSPE-PEG) with different anionic and zwitterionic surfactants (pseudo-binary and pseudo-ternary polymer+ surfactant mixtures), and the adsorption of the polymer + surfactant aggregates onto negatively charged surfaces, with a surface charge density similar to that existing on the damaged hair epicuticle. Dynamic light scattering and zeta potential measurements shows that, in solution, the polymer + surfactant association results from an intricate balance between electrostatic and hydrophobic interactions, which leads to the formation of at least two different types of micellar-like polymer + surfactant aggregates. The structure and physicochemical properties of such aggregates were found strongly dependent on the specific nature and concentration of the surfactant. The adsorption of the polymer + surfactant aggregates onto negatively charged surface was studied using a set of surface-sensitive techniques (quartz crystal microbalance with dissipation monitoring, ellipsometry and Atomic Force Microscopy), which allows obtaining information about the adsorbed amount, the water content of the layers and the topography of the obtained films. Ion-dipole interactions between the negative charges of the surface and the oxyethylene groups of the polymer + surfactant aggregates appear as the main driving force of the deposition process. This is strongly dependent on the surfactant nature and its concentration, with the impact of the latter on the adsorption being especially critical when anionic surfactant are incorporated within the aggregates. This study opens important perspectives for modulating the deposition of a poorly interacting polymer onto negatively charged surfaces, which can impact in the fabrication on different aspects with technological and industrial interest.


Sign in / Sign up

Export Citation Format

Share Document