New Technique for AB Initio Atomistic Potentials and Application to Thermal Expansion of Ni/Cr Alloys

1992 ◽  
Vol 291 ◽  
Author(s):  
J. Mei ◽  
B.R. Cooper ◽  
Y.G. Hao ◽  
S.P. Lim ◽  
F.L. VanScoy

ABSTRACTA scheme of developing ab initio many body potentials based on total energy calculations within density functional theory (DFT) is presented and demonstrated for transition metal alloys. An ab initio interatomic potential for Ni/Cr alloys is constructed with no input from experimental data. Molecular dynamics simulations have been performed to study thermal expansions. The coefficient of thermal expansion (CTE) has been calculated over a wide range of temperature, and good agreement is obtained between theory and experiment.

2001 ◽  
Vol 692 ◽  
Author(s):  
William Barvosa-Carter ◽  
Frank Grosse ◽  
James H. G. Owen ◽  
Jennifer J. Zinck

AbstractWe have studied the structure of MBE-grown InAs(001)-(2×4) surfaces exposed to low Sb2 fluxes by scanning tunneling microscopy (STM) and ab initio density functional theory (DFT). Experimentally, we observe an Sb-terminated α2(2×4) phase over a wide range of temperatures (400–510 °C) for low Sb2 flux (<0.1 ML/s), whereas temperature and As2 flux must be carefully controlled to achieve the same As-terminated surface structure. At lower temperatures, we observe indications of an Sb-terminated (2×8) symmetry surface phase, and we report briefly on its proposed structure and stability, as well as its possible role in subsequent formation of the Sb-terminated (1×3) phase found at typical Sb2 fluxes used during heterostructure growth.


2021 ◽  
Author(s):  
Saswata Dasgupta ◽  
Eleftherios Lambros ◽  
John Perdew ◽  
Francesco Paesani

Density functional theory (DFT) has been extensively used to model the properties of water. Albeit maintaining a good balance between accuracy and efficiency, no density functional has so far achieved the degree of accuracy necessary to correctly predict the properties of water across the entire phase diagram. Here, we present density-corrected SCAN (DC-SCAN) calculations for water which, minimizing density-driven errors, elevate the accuracy of the SCAN functional to that of “gold standard” coupled-cluster theory. Building upon the accuracy of DC-SCAN within a many-body formalism, we introduce a data-driven many-body potential energy function, MB-SCAN(DC), that quantitatively reproduces coupled cluster reference values for interaction, binding, and individual many-body energies of water clusters. Importantly, molecular dynamics simulations carried out with MB-SCAN(DC) also reproduce the properties of liquid water, which thus demonstrates that MB-SCAN(DC) is effectively the first DFT-based model that correctly describes water from the gas to the liquid phase.


2018 ◽  
Vol 20 (36) ◽  
pp. 23717-23725 ◽  
Author(s):  
Vesa Hänninen ◽  
Garold Murdachaew ◽  
Gilbert M. Nathanson ◽  
R. Benny Gerber ◽  
Lauri Halonen

Ab initio molecular dynamics simulations of formic acid (FA) dimer colliding with liquid water at 300 K have been performed using density functional theory.


RSC Advances ◽  
2019 ◽  
Vol 9 (49) ◽  
pp. 28609-28617 ◽  
Author(s):  
H. Ouarrad ◽  
F.-Z. Ramadan ◽  
L. B. Drissi

Based on the density functional theory and many-body ab initio calculations, we investigate the optoelectronic properties of diamond-shaped quantum dots based graphene, silicene and graphene–silicene hybrid.


2015 ◽  
Vol 17 (34) ◽  
pp. 22009-22014 ◽  
Author(s):  
Pouya Partovi-Azar ◽  
Thomas D. Kühne ◽  
Payam Kaghazchi

Using density functional theory calculations and ab initio molecular dynamics simulations, we have observed a clear evidence of Li2S4 → Li2S2 transition by studying systematic changes in the simulated Raman spectra of (Li2S4)n, n = 1, 4, and 8, towards that of (Li2S2)8.


Sign in / Sign up

Export Citation Format

Share Document