Effects of Intermittent Deposition on the Defect Density in a-Si:H

1994 ◽  
Vol 336 ◽  
Author(s):  
Toshihiro Kamei ◽  
Nobuhiro Hata ◽  
Akihisa Matsuda

ABSTRACTEffects of intermittent deposition on the defect density in hydrogenated Amorphous silicon (a-Si:H) are investigated at various substrate temperatures by using a mechanical shutter, while maintaining the discharge continuously. The intermittent deposition experiments, where monolayer growth and intermission (waiting time) are repeated in cycles, enable us to study surface dangling bond (DB) recombination and thermal hydrogen desorption separately from other reactions on the growth surface. The defect density in films prepared at lower substrate temperatures decreases with the waiting time, while that deposited at higher substrate temperatures increases with the waiting time.

1993 ◽  
Vol 297 ◽  
Author(s):  
Hitoshi Nishio ◽  
Gautam Ganguly ◽  
Akihisa Matsuda

We present a method to reduce the defect density in hydrogenated amorphous silicon (a-Si:H) deposited at low substrate temperatures similar to those used for device fabrication . Film-growth precursors are energized by a heated mesh to enhance their surface diffusion coefficient and this enables them to saturate more surface dangling bonds.


1993 ◽  
Vol 297 ◽  
Author(s):  
Jong-Hwan Yoon

In this paper we present a method to determine the annealable defect density(ΔNann) present in hydrogenated amorphous silicon(a-Si:H). The effects of the annealable defects on the light-induced defect generation rate, saturated defect density (Nsat) and the change of defect density in the light-induced saturated state(ΔNsat) have been studied. Annealable defect density was varied by depositing samples at various substrate temperatures or by post-growth anneals of samples grown at low substrate temperatures. It is found that the generation rate, N satand ΔNsat are well correlated with ΔNann. In particular, the ΔNsat is found to follow a relation ΔNsat ≈ ΔNann. These results suggest that defect-related microscopic models are appropriate for light-induced metastability.


2006 ◽  
Vol 910 ◽  
Author(s):  
David C. Bobela ◽  
T. Su ◽  
P. C. Taylor ◽  
A. Madan ◽  
G. Ganguly

AbstractThe concentration of polysilane chains (SiH2)n, where n≥1, is estimated for higher quality hydrogenated amorphous silicon (a-Si:H) by pulsed proton nuclear magnetic resonance techniques (1H NMR). Our measurements indicate the minimum hydrogen content of approximately 10% of the total hydrogen is in the (SiH2)n configuration. Similar measurements in a high defect density sample (1017 silicon dangling bond defects cm-3) show that (SiH2)n sites account for ~ 15% of the total hydrogen. While the (SiH2)n infrared absorption (IR) modes are observed in the highly defective sample, no such modes are seen in the higher quality material. The results indicate that a significant amount of the total hydrogen content exists as (SiH2)n regardless of film quality.


1990 ◽  
Vol 209 ◽  
Author(s):  
Lin H. Yang ◽  
C. Y. Fong ◽  
Carol S. Nichols

ABSTRACTThe two most outstanding features observed for dopants in hydrogenated amorphous silicon (a-Si:H) - a shift in the Fermi level accompanied by an increase in the defect density and an absence of degenerate doping - have previously been postulated to stem from the formation of substitutional dopant-dangling bond complexes. Using firstprinciples self-consistent pseudopotential calculations in conjunction with a supercell model for the amorphous network and the ability of network relaxation from the first-principles results, we have studied the electronic and structural properties of substitutional fourfoldcoordinated phosphorus and boron at the second neighbor position to a dangling bond defect. We demonstrate that such impurity-defect complexes can account for the general features observed experimentally in doped a-Si:H.


1989 ◽  
Vol 149 ◽  
Author(s):  
S. Qureshi ◽  
V. Perez-Mendez ◽  
S. N. Kaplan ◽  
I. Fujieda ◽  
G. Cho

ABSTRACTTransient photoconductivity and ESR measurements were done to relate the ionized dangling bond density and the spin density of thick hydrogenated amorphous silicon (a-Si:H) detectors. We found that only a fraction (∼30–35%) of the total defect density as measured by ESR is ionized when the detector is biased into deep depletion. The measurements on annealed samples also show that this fraction is about 0.3. An explanation based on the shift of the Fermi energy is given. The measurements show that the time dependence of relaxation is a stretched exponential.


1993 ◽  
Vol 297 ◽  
Author(s):  
N.H. Nickel ◽  
W.B. Jackson ◽  
C.C. Tsai

Hydrogenated amorphous silicon films were deuterated through a sequence of 1h exposures to a remote deuterium plasma at 350°C. The concentration profiles of hydrogen and deuterium were determined by SIMS at various times during the exposure sequence. The defect density in state A, after deuteration and after illumination with white light were determined using CPM measurements following each 1h exposure sequence. We find that post-deuteration does not alter the defect density in state A, change the Urbach edge, nor significantly alter metastable defect formation. Intense light soaking increases the defect density by about 5 × 10l6cm−3 independent of the total H + D concentration. These results suggest that D always enters the sample in pairs pinning the hydrogen chemical potential which supports the idea of a negative U system for hydrogen and deuterium. Despite an increase of Si-H bonds by as much as 3 × 1021cm−3, the annealed dangling bond density and the weak Si-Si bond density did not change.This suggests that the density of weak Si-Si bonds as well as the dangling bond density is determined by equilibration with strong Si-Si bonds through the interchange of H. The implications of these results for H bonding will be discussed.


1992 ◽  
Vol 258 ◽  
Author(s):  
Gautam Ganguly ◽  
Akihisa Matsuda

ABSTRACTThe idea of surface mobility of growth precursors determined material quality has been exploited by raising the substrate temperature above the conventional 250°C and the ensuing thermal depletion of the surface hydrogen coverage compensated by increasing the precursor flux (deposition rate) to prepare ultra low defect density hydrogenated amorphous silicon.


1995 ◽  
Vol 377 ◽  
Author(s):  
Helena Gleskova ◽  
S. Wagner

ABSTRACTWe report results of a search for a unifying rate law for the annealing of metastable defects in hydrogenated amorphous silicon (a-Si:H). We tested the hypothesis that defect-annealing by both heating or illumination is driven by the density of free electrons. This hypothesis is formulated via the rate equation - dN/dt = A nα N f (T), where N is the defect density, t the time, A a constant, n the free electron density, and f (T) a function of temperature derived from a distribution of annealing energies. The model fits two sets of data, with light-intensity and electrical conductivity as the independent variables, reasonably well, with a ranging from 0.39 to 0.76, but not the third set, where we varied the temperature.


1997 ◽  
Vol 467 ◽  
Author(s):  
C. Godet

ABSTRACTIn hydrogenated amorphous silicon (a-Si:H) films, the increase of the metastable defect density under high-intensity illumination is usually described by an empirical two-parameter stretched-exponential time dependence (characteristic time τSE and dispersion parameter β). In this study, a clearly different (one-parameter) analytic function is obtained from a microscopic model based on the formation of metastable H (MSH) atoms in a-Si:H films. Assuming that MSH atoms are the only mobile species, only three chemical reactions are significant : MSH are produced from doubly hydrogenated (SiH HSi) configurations and trapped either at broken bonds or Si-H bonds, corresponding respectively to light-induced annealing (LIA) and light-induced creation (LIC) of defects. Competition between trapping sites results in a saturation of N(t) at a steady-state value Nss. A one-parameter fit of this analytical function to experimental data is generally good, indicating that the use of a statistical distribution of trap energies is not necessary.


Sign in / Sign up

Export Citation Format

Share Document