Development of Aluminosilicate Polyelectrolytes for Solid-State Battery Applications

1995 ◽  
Vol 393 ◽  
Author(s):  
Glenn C. Rawsky ◽  
Kevin J. Henretta ◽  
Robert Lowrey ◽  
Duward F. Shrtver ◽  
Semyon Vaynman

ABSTRACTWe have synthesized and characterized a range of novel polyelectrolytes containing weakly basic aluminosilicate anions in the polymer backbone in order to achieve t+ = 1 and high ionic mobility. Room-temperature conductivity is observed to increase in the series: [NaAl(OEOMe)2 ((OE)xO)2/2]n < [NaAl(OR)2(OSiMe2(CH2)3(OE)xO(CH2)3SiMe2O)2/2]n < [NaAl(OSiR3)(OSiMe2(CH2)3(OE)xO (CH2)3SiMe2O)3/2]n. This trend is ascribed to reduced ion pairing due to decreasing anion basicity, and lowered Tg resulting from increasing siloxy character. The addition of cryptand [2.2.2] increases conductivities by 1 -1.5 orders of magnitude. A maximum room-temperature conductivity is observed at a ratio of ≈10 etheric oxygens/cation. Related lithium polymer electrolytes were evaluated in mechanically joined solid state Li |PE |[LixMn2O4-C-PE] cells.

RSC Advances ◽  
2015 ◽  
Vol 5 (17) ◽  
pp. 12597-12604 ◽  
Author(s):  
Wei-Fan Kuan ◽  
Roddel Remy ◽  
Michael E. Mackay ◽  
Thomas H. Epps, III

Tapered block polymer electrolytes have been developed and exhibited enhanced room temperature conductivity relative to poly(styrene-b-ethylene oxide) (P(S-EO)) and non-tapered poly(s-b-oligo-oxyethylene methacrylate) (P(S-OEM)) counterparts.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Hayashi ◽  
N. Masuzawa ◽  
S. Yubuchi ◽  
F. Tsuji ◽  
C. Hotehama ◽  
...  

AbstractSolid electrolytes are key materials to enable solid-state rechargeable batteries, a promising technology that could address the safety and energy density issues. Here, we report a sulfide sodium-ion conductor, Na2.88Sb0.88W0.12S4, with conductivity superior to that of the benchmark electrolyte, Li10GeP2S12. Partial substitution of antimony in Na3SbS4 with tungsten introduces sodium vacancies and tetragonal to cubic phase transition, giving rise to the highest room-temperature conductivity of 32 mS cm−1 for a sintered body, Na2.88Sb0.88W0.12S4. Moreover, this sulfide possesses additional advantages including stability against humid atmosphere and densification at much lower sintering temperatures than those (>1000 °C) of typical oxide sodium-ion conductors. The discovery of the fast sodium-ion conductors boosts the ongoing research for solid-state rechargeable battery technology with high safety, cost-effectiveness, large energy and power densities.


2012 ◽  
Vol 545 ◽  
pp. 312-316 ◽  
Author(s):  
Siti Khatijah Deraman ◽  
Ri Hanum Yahaya Subban ◽  
Mohamed Nor Sabirin

Poly(vinyl) chloride (PVC)-NH4I-EC films have been prepared by solution cast technique. The sample containing 30 wt. % NH4I exhibited highest room temperature conductivity of 4.60 × 10-7S cm-1. The conductivity increased to 1.08 × 10-6Scm-1when 15 wt. % of ethylene carbonate (EC) was added to 70 wt. % PVC - 30 wt. % NH4I. Fourier Transform Infrared (FTIR) showed evidence of polymer–salt complexation while DSC showed increase in glass transition temperature (Tg) of PVC -NH4I - EC polymer electrolytes. The conductivity behavior of the studied system could be accounted by the changes in Tgvalues.


2019 ◽  
Vol 821 ◽  
pp. 389-394
Author(s):  
Andrew Dono ◽  
Rinlee Butch Cervera

Lithium Lanthanum Titanate, Li3xLa(2/3)-x□(1/3)-2xTiO3, with three different compositions of (i) x = 0.097 (Li0.29La0.57TiO3), (ii) x = 0.117 (Li0.35La0.55TiO3), and (iii) x = 0.167 (Li0.50La0.50TiO3) were prepared via solid state reaction synthesis sintered at 1150 °C for 36 hours. X-ray diffraction (XRD) analysis revealed that all samples can be indexed to a cubic perovskite structure with lattice parameter a of about 3.86 Å. Morphological analysis using SEM showed that the samples are relatively dense and the calculated relative density of the LLTO samples range from about 94% to as high as 99% with increasing trend as Li content increases. Room temperature conductivity and its temperature dependence up to 120 °C were investigated. LLTO sample with x =0.117 revealed the highest total ionic conductivity at room temperature of about 1.69 x 10-03 S/cm which can be a promising solid electrolyte for an all-solid-state lithium-ion batteries.


2006 ◽  
Vol 61 (8) ◽  
pp. 1007-1011 ◽  
Author(s):  
G. C. Anyfantis ◽  
G. C. Papavassiliou ◽  
A. Terzis ◽  
C. P. Raptopoulou ◽  
Y.F. Weng ◽  
...  

The unsymmetrical (mixed-ligand) nickel 1,2-dithiolene complexes Ni(pddt)(dmio) and Ni(pddt)(dmit) (where pddt is 6,7-dihydro-5H-1,4-dithiepin-2,3-dithiolate, dmio is 1,3-dithiol-2-one- 4,5-dithiolate, and dmit is 1,3-dithiol-2-thione-4,5-dithiolate) were synthesized and characterized. The new complexes were found to be soluble in organic solvents, from which single crystals and/or thin deposits can be obtained. In the solid state, the compounds behave as single-component semiconductors with low room temperature conductivity values


2015 ◽  
Vol 719-720 ◽  
pp. 82-86 ◽  
Author(s):  
N.L.M. Zazuli ◽  
A.S.A. Khiar

Polymer electrolytes blends of methylcellulose (MC)/chitosan-ammonium triflate (NH4CF3SO3) plasticized with Ethylene Carbonate (EC) were prepared by solution-casting technique. The effect on electrical property was investigated by impedance spectroscopy. Sample with 45 wt% of EC exhibit the highest room temperature conductivity of 2.16 × 10-4 Scm-1. Dielectric data were analyzed for the sample with the highest conductivity.


Author(s):  
zhangqin shi ◽  
Wenyao Guo ◽  
luozeng zhou ◽  
Qunjie Xu ◽  
Yulin Min

Polyethylene oxide (PEO)-based polymer electrolytes are potential replacements for safer solid electrolytes in next-generation lithium metal batteries. However, the lower room temperature ionic conductivity and poor mechanical properties greatly hinder...


2021 ◽  
Author(s):  
Ming Liu ◽  
Ernst van Eck ◽  
Swapna Ganapathy ◽  
Marnix Wagemaker

Abstract Development of commercial solid-state batteries so far been hindered by the individual limitations of inorganic and organic solid-electrolytes, motivating hybrid concepts. However, room-temperature performance of hybrid-solid electrolytes is still insufficient in terms of ion conductivity, where especially the role and impact of the inorganic and organic interphases is largely unexplored. A key challenge is to assess the Li-ion transport over the interfaces directly and relate this to the surface chemistry. Here the lithium-ion conductivity in hybrid-solid electrolytes, the interface structure and Li+ interface transport was investigated by state-of-art solid-state nuclear magnetic resonance methodologies. In a hybrid-solid Polyethylene oxide polymer – inorganic electrolyte, two representative types of ionic liquids, having a different miscibility with the polymer, were used as a benchmark to tailor the local environment at the interface between the inorganic and organic solid electrolytes species. The poor miscibility ionic liquid wets the polymer-inorganic interface and raises the local polarizability, thereby lowering the diffusional barrier, which activates the high conductivity of the inorganic solid-electrolyte, resulting in and overall room temperature conductivity of 0.25 mS/cm. A very high critical current density of 0.25 mA/cm2 versus a Li-metal anode is achieved, demonstrating improved stability, and a LiFePO4 – Li-metal full solid-state cell can be cycled at room temperature at an Coulombic efficiency of 99.9%. The local interface environment between the solid electrolyte phases in hybrid solid electrolytes, is thus demonstrated to be the bottleneck and tailoring the interface properties appears a viable route towards the design of highly conducting hybrid-solid electrolyte concepts.


Sign in / Sign up

Export Citation Format

Share Document