Environment Sensitive Embedding Energies of Impurities, and Grain Boundary Stability in Tantalum

1995 ◽  
Vol 408 ◽  
Author(s):  
Genrich L. Krasko

AbstractMetalloid impurities have a very low solubility in Tantalum, and therefore prefer to segregate at the grain boundaries (GBs). In order to analyze the energetics of the impurities on the Tantalum GB, the LMTO calculations were performed on a simple 8-atom supercell emulating a typical (capped trigonal prism) GB environment. The so-called “environment-sensitive embedding energies” were calculated for Hydrogen, Boron, Carbon, Nitrogen, Oxygen, Phosphorus, and Sulphur, as a function of the electron charge density due to the host atoms at the impurity site. The calculations showed that, at the electron density typical of a GB, Carbon has the lowest energy (followed by Nitrogen and Boron) and thus would compete with the other impurities for the site on the GB, tending to displace them from the GB. The above energies were then used in a modified Finnis-Sinclair embedded atom approach for calculating the cohesive energies and the equilibrium interplanar distances in the vicinity of a (111) Σ3tilt GB plane, both for the clean GB and that with an impurity. These distances were found to oscillate, returning to the value corresponding to the equilibrium spacing between (111) planes in bulk BCC Tantalum by the 10th-12th plane off the GB. Carbon, Nitrogen and Boron somewhat dampen the deformation wave (making the oscillations less than in the clean GB), while Oxygen, Phosphorus and Sulphur result in an increase of the oscillations. The cohesive energies follow the same trend, the GB with Carbon being the most stable. Thus, Carbon, Nitrogen and Boron may be thought of as being cohesion enhancers, while Oxygen, Phosphorus and Sulphur result in decohesion effects.

1991 ◽  
Vol 238 ◽  
Author(s):  
Genrich L. Krasko

ABSTRACTImpurities, such as H, P, S, B, etc, have a very low solubility in iron, and therefore prefer to segregate at the grain boundaries (GBs). In order to analyze the energetics of the impurities on the iron GB, the LMTO calculations were performed on a simple 8-atom supercel 1 emulating a typical (capped trigonal prism) GB environment. The so-called “environment-sensitive embedding energies” were calculated for H, B, C, N, O, Al, Si, P, and S, as a function of the electron charge density due to the host atoms at the impurity site. It was shown that, at the electron charge density typical of a GB, B and C have the lowest energy among the analyzed impurities, and thus would compete with them for the site on the GB, tending to push the other impurities off the GB. The above energies were then used in a modified Finnis-Sinclair embedded atom approach for calculating the equilibrium interplanar distances in the vicinity of a (111) σ3 tilt GB plane, both for the clean GB and that with an impurity. These distances were found to be oscillating, returning to the equilibrium spacing between (111) planes in bulk BCC iron by the 10th-12th plane off the GB plane. H, B, C, N and O actually dampen the deformation wave (making the oscillation amplitudes less than in the clean GB), while, Al, Si, P and S result in an increase of the oscillations. The effect of B, C, N and O may be interpreted as cohesion enhancement; this conclusion supports our earlier first-principles results [1] on B and C.


Author(s):  
J. Stanley Griffith

ABSTRACTThe values of a free-electron eigenfunotion at the carbon nuclei of a conjugated hydrocarbon are found to satisfy a system of algebraic equations. These equations are similar in form to those obtained in the method known as the linear combination of atomic orbitale but only coincide with them for linear polyenes and benzene. The symmetry, degeneracy and energy of the eigenvectors of these free-electron equations correspond exactly to those of the free-electron wave functions found by the usual methods. From this correspondence, a theorem is deduced about the free-electron charge density in alternant hydrocarbons.


1997 ◽  
Vol 87 (6) ◽  
pp. 1324-1327 ◽  
Author(s):  
Kahoru Nishina ◽  
Katsuya Mikawa ◽  
Makoto Shiga ◽  
Nobuhiro Maekawa ◽  
Hidehumi Obara

Background Sevoflurane is a useful anesthetic for inhalational induction in children because of its low solubility in blood and relatively nonpungent odor. Clonidine has sedative and anxiolytic properties and reduces the requirement for inhalation agents. Nitrous oxide (N2O) also decreases the requirement of inhaled anesthetics, but the effect is variable. The minimum alveolar concentration for tracheal intubation (MAC(TI)) of sevoflurane was assessed with and without N2O and clonidine premedication. Methods Seventy-two patients, aged 3-11 yr, were assigned to one of six groups (n = 12 each). They received one of three preanesthetic medications (two groups for each premedication): placebo (control), 2 microg/kg oral clonidine or 4 microg/kg oral clonidine. In one group of each premedication, anesthesia was induced with sevoflurane in oxygen; in the other group, anesthesia was induced with sevoflurane in the presence of 60% N2O. Each concentration of sevoflurane at which tracheal intubation was attempted was predetermined according to Dixon's up-and-down method and held constant for at least 20 min before the trial Results The MAC(TI) of sevoflurane in the absence of N2O (mean +/- SEM) was 3.2 +/- 0.2%, 2.5 +/- 0.1%, and 1.9 +/- 0.2% in the control, 2-microg/kg clonidine, and 4-microg/kg clonidine groups, respectively. Nitrous oxide (60%) decreased the MAC(TI) of sevoflurane by 26%, 24%, and 27% in the control, 2-microg/kg clonidine, and 4-microg/kg clonidine groups. Conclusions Oral clonidine premedication decreased the MAC(TI) of sevoflurane. Nitrous oxide also decreased the MAC(TI). The combination of clonidine and N2O lessened the MAC(TI) of sevoflurane more than did either drug alone.


2003 ◽  
Vol 17 (21) ◽  
pp. 3865-3879 ◽  
Author(s):  
A. S. Barnard ◽  
S. P. Russo ◽  
I. K. Snook

Presented here are results of ab initio Density Functional Theory (DFT) structural relaxations performed on dehydrogenated and monohydrogenated nanocrystalline diamond structures of octahedral {111} and cuboctahedral morphologies, up to approximately 2 nm in diameter. Our results in this size range show an inward transition of dehydrogenated nanodiamond clusters into carbon onion-like structures, with preferential exfoliation of the (111) surfaces, in agreement with experimental observations. However, we have found that this transition may be prevented by monohydrogenation of the surfaces. Bonding of atoms in the surface layers of the relaxed structures, and interlayer bonding has been investigated using the electron charge density.


1986 ◽  
Vol 137 (2) ◽  
pp. 441-447 ◽  
Author(s):  
U. Pietsch ◽  
V. G. Tsirelson ◽  
R. P. Ozerov

Sign in / Sign up

Export Citation Format

Share Document