Native Point Defect Densities and Dark Line Defects in ZnSe

1995 ◽  
Vol 408 ◽  
Author(s):  
M. A. Berding ◽  
A. Sher ◽  
M. Van Schilfgaarde

AbstractNative point defect densities (including vacancies, antisites and interstitials) in ZnSe are calculated using a quasichemical formalism, including both vibrational and electronic contributions to the defect free energy. The electronic contribution to the defect formation free energy is calculated using the self-consistent first-principles full-potential linearized muffin-tin orbital (FP-LMTO) method and the local-density approximation (LDA). Gradient corrections are included so that absolute reference to zinc atoms in the vapor phase can be made. We find that the Frenkel defect formation energy is ∼0.3 eV lower at a stacking fault than in the bulk lattice. Nonradiative-recombination-induced Frenkel defect generation at stacking faults is proposed as a mechanism responsible for the limited device lifetimes.

2016 ◽  
Vol 120 (10) ◽  
pp. 105302 ◽  
Author(s):  
Hantian Gao ◽  
Thaddeus J. Asel ◽  
Jon W. Cox ◽  
Yuanyao Zhang ◽  
Jian Luo ◽  
...  

2002 ◽  
Vol 46 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Hannes Schweiger ◽  
Olga Semenova ◽  
Walter Wolf ◽  
Wolfgang Püschl ◽  
Wolfgang Pfeiler ◽  
...  

2015 ◽  
Vol 29 (05) ◽  
pp. 1550028 ◽  
Author(s):  
R. Graine ◽  
R. Chemam ◽  
F. Z. Gasmi ◽  
R. Nouri ◽  
H. Meradji ◽  
...  

We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride ( InN ) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke–Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.


1981 ◽  
Vol 128 (3) ◽  
pp. 661-669 ◽  
Author(s):  
A. K. Chin ◽  
W. C. King ◽  
T. J. Leonard ◽  
R. J. Roedel ◽  
C. L. Zipfel ◽  
...  

2021 ◽  
Vol 1028 ◽  
pp. 199-203
Author(s):  
Fiqhri Heda Murdaka ◽  
Edi Suprayoga ◽  
Abdul Muizz Pradipto ◽  
Kohji Nakamura ◽  
Agustinus Agung Nugroho

We report the estimation of muon sites inside Mn3Sn using density functional theory based on the full-potential linearized augmented plane wave (FLAPW) calculation. Our calculation shows that the Perdew–Burke–Ernzerhof (PBE) Generalized-Gradient Approximation (GGA) functional is closer to the experimental structure compared to the von Barth-Hedin Local Density Approximation (LDA)-optimized geometry. The PBE GGA is therefore subsequently used in FLAPW post-calculation for the electrostatic potential calculation to find the local minima position as a guiding strategy for estimating the muon site. Our result reveals at least two muon sites of which one is placed at the center between two Mn-Sn triangular layers (A site) and the other at the trigonal prismatic site of Sn atom (B site). The total energy of Mn3Sn system in the presence of muon at A site or B site are compared and we find that A site is a more favorable site for muon to stop.


2021 ◽  
Vol 130 (12) ◽  
pp. 125702
Author(s):  
Anurag Vohra ◽  
Geoffrey Pourtois ◽  
Roger Loo ◽  
Wilfried Vandervorst

1995 ◽  
Vol 399 ◽  
Author(s):  
A.G. Cullis

ABSTRACTThe manner in which misfit strain can influence the morphology of heteroepitaxial layers is reviewed. Following a brief consideration of theoretical modelling, examples of experimental observations for two important materials systems, SiGe/Si and InGaAs/GaAs, are given. It is demonstrated that the formation of undulations of specific types is driven by partial elastic stress-relief and a lowering of the system free energy. Under these conditions, islands of deposit can be formed during initial growth and ripples can be produced upon continuous layers. Furthermore, the presence of surface morphological distortions and the accompanying strain fluctuations also can have a significant impact upon misfit dislocation introduction. Relationships between these fluctuations and dislocation source behaviour are described.


Sign in / Sign up

Export Citation Format

Share Document