Dissolution of Basaltic Glass: Effects of pH and Organic Ligands

1995 ◽  
Vol 412 ◽  
Author(s):  
Hui Teng ◽  
D. E. Grandstaff

AbstractDissolution of powdered glass from Kilauea volcano, Hawaii (ca 51% SiO2) was studied in a fluidized-bed, flow-through reactor at room temperature in both dilute HCI and organic ligand-bearing solutions (citrate and oxalate) to determine the effects of pH and organic acids on the dissolution rate. Dissolution was non-stoichiometric in both HCI and organic solutions; however, the relative release rates of various ions and the composition of leached layers or secondary phases are fimctions of pH and organic ligand concentration and type. In HCl solutions, the minimum glass dissolution rate, as assessed from the Na leaching rate, was 7.4 × 10−12 gm cm−2 sec−1, comparable with previous results, and was virtually independent of pH. Addition of citrate and oxalate increased the non-stoichiometry of dissolution. At pH 7, the overall rate of glass dissolution decreased (by as much as 5 times) at low ligand concentrations (< 1 mM), but increased by as much as five times at higher concentration (3 mM). High ligand concentrations do increase the release rate of some elements, especially multivalent cations, such as Fe3+ which form strong organic complexes, by as much as 100 times.

1989 ◽  
Vol 176 ◽  
Author(s):  
William L. Bourcier ◽  
Dennis W. Peiffer ◽  
Kevin G. Knauss ◽  
Kevin D. McKeegan ◽  
David K. Smith

ABSTRACTA kinetic model for the dissolution of borosilicate glass, incorporated into the EQ3/6 geochemical modeling code, is used to predict the dissolution rate of a nuclear waste glass. In the model, the glass dissolution rate is controlled by the rate of dissolution of an alkalidepleted amorphous surface (gel) layer. Assuming that the gel layer dissolution affinity controls glass dissolution rates is similar to the silica saturation concept of Grambow [1] except that our model predicts that all components concentrated in the surface layer, not just silica, affect glass dissolution rates. The good agreement between predicted and observed elemental dissolution rates suggests that the dissolution rate of the gel layer limits the overall rate of glass dissolution. The model predicts that the long-term rate of glass dissolution will depend mainly on ion concentrations in solution, and therefore on the secondary phases which precipitate and control ion concentrations.


1999 ◽  
Vol 556 ◽  
Author(s):  
P. K. Abraitis ◽  
B. P. McGrail ◽  
D. P. Trivedi

AbstractThe dissolution rate of a simulated Magnox waste glass has been investigated in single-pass flow-through experiments designed to investigate the role of Al and Si in the dissolution process. The results indicate that both Al and Si species suppress the rate of dissolution. These effects may be modelled using a combined Al/Si affinity term in a conventional glass dissolution rate law. Aluminium species may also play an inhibitory role when present at relatively high solution activities. In Si-rich alkaline media, the concentration of aluminium is controlled to very low levels by the development of secondary aluminosilicate phases. Removal of Al by secondary phase precipitation results in dissolved Al activities below that required to reach ‘saturation’ with respect to the glass.


2021 ◽  
Vol 1 ◽  
pp. 143-144
Author(s):  
Felix Brandt ◽  
Martina Klinkenberg ◽  
Sébastien Caes ◽  
Jenna Poonoosamy ◽  
Wouter Van Renterghem ◽  
...  

Abstract. Immobilization of high-level and intermediate-level nuclear wastes by vitrification in borosilicate glass is a well-established process. There is a consensus between the waste management agencies of many countries and many experts that vitrified nuclear waste should be disposed of in a deep geological waste repository and therefore its long-term behavior needs to be taken into account in safety assessments. In contact with water, borosilicate glass is metastable and dissolves. In static dissolution experiments, often a surface alteration layer (SAL) forms on the dissolving glass, and later sometimes secondary phases form. Based on boron or lithium release rates, commonly three stages of glass dissolution are defined as a function of the reaction progress: (I) initial dissolution, described by a congruent glass dissolution at the highest rate, (II) residual dissolution, characterized by a glass dissolution rate several orders of magnitude lower than the initial one, and (III) resumption of glass alteration with initial rates. Microscopically, the formation of a complex SAL has been identified as a prerequisite for the slower dissolution kinetics of stage II. Stage III is typically observed under specific conditions, i.e., high temperature and/or high pH driven by the uptake of Si and Al into secondary phases. Different glass dissolution models explaining the mechanisms of the SAL formation and rate-limiting steps have been proposed and are still under debate. In this article different aspects of glass dissolution from recent studies in the literature and our own work are discussed with a focus on the microscopic aspects of SAL formation, secondary phase formation and the resumption of glass dissolution. Most of the experiments in the literature were performed under near-neutral pH conditions and at 90 ∘C, following standard procedures, to understand the fundamental mechanisms of glass dissolution. The example of interaction of glass and cementitious materials as discussed here is relevant for safety assessments because most international concepts include cement e.g., as lining, for plugs, or as part of the general construction of the repository. The aim of the investigations presented in this paper was to study the combined effect of hyperalkaline conditions and very high surface area/volume ratios (SA/V=264000m-1) on the dissolution of international simplified glass (ISG) and the formation of secondary phases at 70 ∘C in a synthetic young cement water containing Ca (YCWCa). The new results show that the SA/V ratio is a key parameter for the dissolution rate and for the formation of the altered glass surface and secondary phases. A comparison with similar studies in the literature shows that especially on the microscopic and nanoscale, different SA/V ratios lead to different features on the dissolving glass surface, even though the SA-normalized element release rates appear similar. Zeolite and Ca-silicate-hydrate phases (CSH) were identified and play a key role for the evolution of the solution chemistry. A kinetic dissolution model coupled with precipitation of secondary phases can be applied to relate the amount of dissolved glass to the evolution of the solution's pH.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
C. Carriere ◽  
P. Dillmann ◽  
S. Gin ◽  
D. Neff ◽  
L. Gentaz ◽  
...  

AbstractThe French concept developed to dispose high-level radioactive waste in geological repository relies on glassy waste forms, isolated from the claystone host rock by steel containers. Understanding interactions between glass and surrounding materials is key for assessing the performance of a such system. Here, isotopically tagged SON68 glass, steel and claystone were studied through an integrated mockup conducted at 50 °C for 2.5 years. Post-mortem analyses were performed from nanometric to millimetric scales using TEM, STXM, ToF-SIMS and SEM techniques. The glass alteration layer consisted of a crystallized Fe-rich smectite mineral, close to nontronite, supporting a dissolution/reprecipitation controlling mechanism for glass alteration. The mean glass dissolution rate ranged between 1.6 × 10−2 g m−2 d−1 to 3.0 × 10−2 g m−2 d−1, a value only 3–5 times lower than the initial dissolution rate. Thermodynamic calculations highlighted a competition between nontronite and protective gel, explaining why in the present conditions the formation of a protective layer is prevented.


Sign in / Sign up

Export Citation Format

Share Document