Characterization of a Lignite Ash from the Metc Gasifier I. Mineralogy

1984 ◽  
Vol 43 ◽  
Author(s):  
Gregory J. McCarthy ◽  
Lindsay P. Keller ◽  
Robert J. Stevenson ◽  
Kevin C. Galbreath ◽  
Aaron L. Steinwand

AbstractUtilization or disposal of gasification ash requires detailed characterization of its chemistry and phase formation (mineralogy). A North Dakota lignite ash produced in the Morgantown Energy Technology Center (METC) gasifier has been studied in detail by x-ray diffraction and electron microprobe analysis. The ash was coarse (84% of grains larger than 1.0 mm) but a typical grain was composed of a dozen or more crystalline phases with dimensions on the micrometer scale as well as less abundant glass phases. Hard centimeter-size clinkers suggested partial melting followed by crystallization. Silicates (dicalcium silicates (C2S), merwinite, Ca-Na-silicate (CNS), quartz), aluminosilicates (melilite, nepheline, carnegieite), oxides (ferrite spinels, periclase, hematite), calcite and minor zeolites comprised the dominant mineralogy. Microprobe analyses were obtained for large numbers of grains of the C2S phases, CNS, merwinite, melilite, ferrite spinels and calcite. The remaining phases had crystal sizes too small for analysis. A model is proposed for the genesis of this ash based on the inorganic constituents of lignite and the gasifier operating conditions.

Author(s):  
A. S. Aloy ◽  
E. N. Kovarskaya ◽  
T. I. Koltsova ◽  
S. E. Samoylov ◽  
S. I. Rovnyi ◽  
...  

Abstract Lanthanum orthophosphate with the monazite structure was proposed on examinations as a suitable matrix for immobilization of future americium-containing liquid wastes, which could be formed in conversion of metallic plutonium into oxide at PA “Mayak.” Specimens of monazite non-active ceramics were fabricated from LaPO4 powders obtained using a thin-film evaporator by either hot-pressing or cold-pressing and sintering at 900–1300 °C. According to electron microprobe analysis (EMPA), scanning electron microscopy (SEM), and X-ray diffraction (XRD), which were used for characterization of produced samples, all specimens did not contain any phase other than the monoclinic monazite phase. Ceramics having the specific activity of Am-241 2.13×107 Bq/g were prepared by only cold-pressing with subsequent sintering at 1300°C during 1 hour. The normalized leach rates of lanthanum and americium in distilled water at 90°C were less than 1.2×10−4 and 2.3 10−4 g/m2×day, respectively.


2017 ◽  
Vol 81 (6) ◽  
pp. 1287-1302
Author(s):  
Ferdinando Bosi ◽  
Andrew G. Christy ◽  
Ulf Hålenius

AbstractFour specimens of the roméite-group minerals oxyplumboroméite and fluorcalcioroméite from the Långban Mn-Fe deposit in Central Sweden were structurally and chemically characterized by single-crystal X-ray diffraction, electron microprobe analysis and infrared spectroscopy. The data obtained and those on additional roméite samples from literature show that the main structural variations within the roméite group are related to variations in the content of Pb2+, which is incorporated into the roméite structure via the substitution Pb2+→A2+ where A2+ = Ca, Mn and Sr. Additionally, the cation occupancy at the six-fold coordinated B site, which is associated with the heterovalent substitution BFe3+ + Y☐→BSb5++YO2-, can strongly affect structural parameters.Chemical formulae of the roméite minerals group are discussed. According to crystal-chemical information, the species associated with the name ‘kenoplumboroméite’, hydroxycalcioroméite and fluorcalcioroméite most closely approximate end-member compositions Pb2(SbFe3+)O6☐, Ca2(Sb5+Ti) O6(OH) and (CaNa)Sb2O6F, respectively. However, in accord with pyrochlore nomenclature rules, their names correspond to multiple end-members and are best described by the general formulae: (Pb,#)2(Sb,#)2O6☐, (Ca,#)2(Sb,#)2O6(OH) and (Ca,#)Sb2(O,#)6F, where ‘#’ indicates an unspecified charge-balancing chemical substituent, including vacancies.


2017 ◽  
Vol 89 (4) ◽  
pp. 523-533 ◽  
Author(s):  
Elena Asabina ◽  
Vladimir Pet’kov ◽  
Pavel Mayorov ◽  
Dmitriy Lavrenov ◽  
Igor Schelokov ◽  
...  

AbstractThe phosphates M0.5+x M′x Zr2−x (PO4)3 (M–Ca, Mn, Co, Sr, Cd, Ba, Pb; M′–Mg, Mn, Co) were synthesized by sol-gel method with the following thermal treatment of reaction mixtures. X-ray diffraction, IR spectroscopy and electron microprobe analysis showed that the obtained phosphates crystallized in Sc2(WO4)3 (SW) and NaZr2(PO4)3 (NZP) structural types. Both types of crystal structures are based on a framework comprised of octahedra and tetrahedra, the difference between them is fragments orientation. Thermal expansion of the phosphates was studied in the temperature range 20–800°C. Some compounds were found to belong to low-expanding materials (αav ~2·10−6°C−1).


2011 ◽  
Vol 299-300 ◽  
pp. 764-769
Author(s):  
Ming Liang Yuan ◽  
Liang Yu ◽  
Jia Hua Tao ◽  
Cong Song

Natural zeolites combined with the magnetic iron oxides are prepared by a chemical coprecipitation process. A detailed characterization of our magnetically modified zeolite (MMZ) is given, including powder X-ray diffraction (XRD), nitrogen adsorption and vibrating sample magnetometer (VSM). The results reveal that in comparison with Na-zeolite, the structure of MMZ has no obvious change but its surface area increases from 25.13 m2g-1to 100.90 m2g-1. The adsorption properties of MMZ to Pb2+and Cu2+were studied. The results show that the maximum loading capacities for Pb2+and Cu2+in the initial concentration range are 123.74 and 14.633 mg g-1, respectively. The MMZ can be used as an adsorbent for removal of heavy metal ions from industrial effluents or municipal waters, and the saturated adsorbent is separated from the medium by a simple magnetic process.


1976 ◽  
Vol 20 ◽  
pp. 565-574
Author(s):  
M. A. Short

The relative intensities of the Kα characteristic radiation obtained from copper-target X-ray diffraction tubes have been calculated for a range of tube accelerating voltages and take-off angles. The calculations employ an over-voltage function, and absorption and atomic number corrections similar to those used in electron microprobe analysis. They apply only to constant potential X-ray generators. Measurements of actual intensities obtained on a Picker diffractometer using a sodium chloride monochromator gave relative intensities in close agreement with those calculated. The calculations and measurements show that there is an optimum tube voltage, with respect to intensity, for each take-off angle. This voltage increases with increasing take-off angle. The application of these results to the consideration of the relative intensities obtainable from broad, standard and fine focus copper-target X-ray diffraction tubes is discussed.


1984 ◽  
Vol 28 ◽  
pp. 367-375 ◽  
Author(s):  
R. G. Johnston ◽  
M. B. Strope ◽  
R. P. Anantatmula

AbstractX-ray diffraction and electron microprobe analysis were used in combination to identify reaction phases that formed on the surfaces of low-carbon steel specimens reacted with a 75% basalt-25% bentonite mixture and anion-doped water in sealed pressure vessels at 100°C and 250°C. Reaction phases on specimen surfaces and in adhering geologic material were identified by conventional X-ray diffraction scans of entire specimens with intact reaction layers. Comparison of results from adhering geologic material and scans of selectively removed layers allowed establishment of approximate reaction gradients in the adhering packing material. Electron microprobe analysis of specimens in cross-section provided quantitative chemical analyses of adhering reaction phases, and identification of reaction layer composition gradients and thicknesses. Magnetite formed on the surface of specimens reacted at 250°C for 4 weeks. Iron-enriched clay was also observed on specimen surfaces and in the adjacent basalt-bentonite mixture. The 100°C experiments yielded surface films of a siderite-structure phase, (Fe,Ca,Mn)CO3, that were not observed in previous experiments with synthetic ground-water. Less extensive iron enrichment of the adjacent clays compared to that seen in the 250°C experiments was observed. The siderite-structure phase generally formed when no carbonate ion was present in the initial solution, implying dissolution of impurity calcite in the bentonite as the controlling factor in the reaction. The results demonstrate the utility of combining X-ray diffraction and electron microprobe analysis for characterization of reaction phases on alloys reacted with complex geologic materials.


1996 ◽  
Vol 453 ◽  
Author(s):  
Wei-Wei Zhuang ◽  
Lumei Liu ◽  
Naijuan Wu ◽  
Zhidong Hao ◽  
David M. Hoffman ◽  
...  

AbstractFerroelectric SrBi2Ta2O9 (SBT) films were prepared by the spin coating technique on platinum, quartz and YBa2Cu3O7-x/LaA1O3 substrates from a methoxyethanol solution of bismuth isopropoxide (Bi(OCH(CH3)2)3) and strontium tantalum isopropoxide (SrTa2(OCH(CH3)2)12). X-Ray diffraction studies showed some crystallization occurred after annealing the films under oxygen flow at 600 °C and excellent crystallinity was achieved after annealing at 750 °C for 0.5 h. Electron microprobe analysis gave a composition close to that expected for SBT, and atomic force microscopy gave a root mean square surface roughness of 101 A. An hysteresis measurement (1 kHz) gave remnant polarization (2Pr), saturation polarization (Ps) and coercive field (Ec) values of 14.5 μC/cm2, 14.5 μ/cm2 and 59 kV/cm, respectively.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1095-C1095
Author(s):  
Marcelo Andrade ◽  
Javier Ellena ◽  
Daniel Atencio

Fluorcalciomicrolite, Ca1.5Ta2O6F, and hydroxycalciomicrolite, Ca1.5Ta2O6(OH), are new microlite-group [1] minerals found in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Both occur as octahedral and rhombododecahedral crystals. The crystals are colourless, yellow and translucent, with vitreous to resinous luster. The densities calculated for fluorcalciomicrolite [2] and hydroxycalciomicrolite are 6.160 and 6.176 g/cm3, respectively. The empirical formulae obtained from electron microprobe analysis are (Ca1.07Na0.81□0.12)Σ2(Ta1.84Nb0.14Sn0.02)Σ2[O5.93(OH)0.07]Σ6.00[F0.79(OH)0.21] for fluorcalciomicrolite and (Ca1.48Na0.06Mn0.01)Σ1.55(Ta1.88Nb0.11Sn0.01)Σ2O6[(OH)0.76F0.20O0.04] for hydroxycalmicrolite. Fluorcalciomicrolite is cubic, space group Fd-3m, a = 10.4191(6) Å, V = 1131.07(11) Å3, and Z = 8. Hydroxycalciomicrolite is also cubic; however, the presence of P-lattice is confirmed by the large number of weak reflections observed by X-ray diffraction. As a result, the space group is P4332 and unit-cell parameters are a = 10.4211(8) Å, and V = 1131.72(15) Å3.


Author(s):  
Aleksandar Kremenović ◽  
Biljana Lazic ◽  
Hannes Krüger ◽  
Martina Tribus ◽  
Predrag Vulić

Crystals of KAlSiO4-O1(potassium aluminium silicate) were synthesized using a flux method and analysed utilizing single-crystal X-ray diffraction and electron microprobe analysis. Both methods confirm that the crystals are nonstoichiometric according to K1−xAl1−xSi1+xO4withx= 0.04 (1). KAlSiO4-O1is closely related to the stuffed derivatives of tridymite, although the topology of the Si/Al-ordered framework is different. Six-membered rings of UUDDUD and UUUDDD (U = up and D = down; ratio 2:1) configurations are present in layers parallel to theabplane. In contrast, the framework of tridymite exhibits UDUDUD rings. The crystals are affected by inversion, pseudo-orthorhombic and pseudo-hexagonal twinning.


2018 ◽  
Vol 82 (1) ◽  
pp. 189-198
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti ◽  
Olav Revheim ◽  
...  

ABSTRACTClino-suenoite, ideally □${\rm Mn}_{2}^{2 +} $Mg5Si8O22(OH)2 is a new amphibole of the magnesium-iron-manganese subgroup of the amphibole supergroup. The type specimen was found at the Lower Scerscen Glacier, Valmalenco, Sondrio, Italy, where it occurs in Mn-rich quartzite erratics containing braunite, rhodonite, spessartine, carbonates and various accessory minerals. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: ANa0.04B(${\rm Mn}_{1.58}^{2 +} $Ca0.26Na0.16)Σ2.00C(Mg4.21${\rm Mn}_{0. 61}^{2 +} {\rm Fe}_{0.04}^{2 +} $Zn0.01Ni0.01${\rm Fe}_{0.08}^{3 +} $Al0.04)Σ5.00TSi8.00O22W[(OH1.94F0.06)]Σ=2.00. Clino-suenoite is biaxial (+), with α = 1.632(2), β = 1.644(2), γ = 1.664(2) and 2Vmeas. = 78(2)° and 2Vcalc. = 76.3°. The unit-cell parameters in the C2/m space group are a = 9.6128(11), b = 18.073(2), c = 5.3073(6) Å, β = 102.825(2)° and V = 899.1(2) Å3 with Z = 2. The strongest ten reflections in the powder X-ray diffraction pattern [d (in Å), I, (hkl)] are: 2.728, 100, (151); 2.513, 77, ($\bar 2$02); 3.079, 62, (310); 8.321, 60, (110); 3.421, 54, (131); 2.603, 42, (061); 2.175, 42, (261); 3.253, 41, (240); 2.969, 40, (221); 9.036, 40, (020).


Sign in / Sign up

Export Citation Format

Share Document