The MiRa/THESIS3D-Code Package for Resonator Design and Modeling of Millimeter-Wave Material Processing

1996 ◽  
Vol 430 ◽  
Author(s):  
L. Feher ◽  
G. Link ◽  
M. Thumm

AbstractPrecise knowledge of millimeter-wave oven properties and design studies have to be obtained by 3D numerical field calculations. A simulation code solving the electromagnetic field problem based on a covariant raytracing scheme (MiRa-Code) has been developed. Time dependent electromagnetic field-material interactions during sintering as well as the heat transfer processes within the samples has been investigated. A numerical code solving the nonlinear heat transfer problem due to millimeter-wave heating has been developed (THESIS3D-Code). For a self consistent sintering simulation, a zip interface between both codes exchanging the time advancing fields and material parameters is implemented. Recent results and progress on calculations of field distributions in large overmoded resonators as well as results on modeling heating of materials with millimeter waves are presented in this paper. The calculations are compared to experiments.

Author(s):  
He Zhang ◽  
Fenglei Niu ◽  
Yu Yu ◽  
Peipei Chen

Thermal mixing and stratification often appears in passive containment cooling system (PCCS), which is an important part of passive safety system. So, it is important to accurately predict the temperature and density distributions both for design optimization and accident analysis. However, current major reactor system analysis codes only provide lumped parameter models which can only get very approximate results. The traditional 2-D or 3-D CFD methods require very long simulation time, and it’s not easy to get result. This paper adopts a new simulation code, which can be used to calculate heat transfer problems in large enclosures. The new code simulates the ambient fluid and jets with different models. For the ambient fluid, it uses a one-dimensional model, which is based on the thermal stratification and derived from three conservation equations. While for different jets, the new code contains several jet models to fully simulate the different break types in containment. Now, the new code can only simulate rectangular enclosures, not the cylinder enclosure. So it is meaningful for us to modify the code to simulate the actual containment, then it can be applied to solve the heat transfer problem in PCCS accurately.


2007 ◽  
Vol 539-543 ◽  
pp. 3219-3224 ◽  
Author(s):  
Yukio Makino ◽  
T. Yoshioka ◽  
H. Saito ◽  
Saburo Sano ◽  
Jun Akedo ◽  
...  

Characteristics of heating processing based on millimeter-wave or pulsed high current are discussed from the standpoint of the interaction between electromagnetic energy and solid materials. Capabilities of the electromagnetic processing are indicated by exemplifying several successful results such as millimeter-wave sintering of AlN, millimeter-wave post-annealing of aerosol-deposited PZT films and synthesis of single-phase nano-structured anatase by SPS (or pulsed high current heating). It is shown in these examples that well-characterized properties such as high thermal conductivity and preferential orientation are created by the inherent effect due to the electromagnetic field, which is called microwave or SPS effect in millimeter-wave or SPS processing.


2021 ◽  
pp. 146808742110072
Author(s):  
Karri Keskinen ◽  
Walter Vera-Tudela ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

Combustion chamber wall heat transfer is a major contributor to efficiency losses in diesel engines. In this context, thermal swing materials (adapting to the surrounding gas temperature) have been pinpointed as a promising mitigative solution. In this study, experiments are carried out in a high-pressure/high-temperature vessel to (a) characterise the wall heat transfer process ensuing from wall impingement of a combusting fuel spray, and (b) evaluate insulative improvements provided by a coating that promotes thermal swing. The baseline experimental condition resembles that of Spray A from the Engine Combustion Network, while additional variations are generated by modifying the ambient temperature as well as the injection pressure and duration. Wall heat transfer and wall temperature measurements are time-resolved and accompanied by concurrent high-speed imaging of natural luminosity. An investigation with an uncoated wall is carried out with several sensor locations around the stagnation point, elucidating sensor-to-sensor variability and setup symmetry. Surface heat flux follows three phases: (i) an initial peak, (ii) a slightly lower plateau dependent on the injection duration, and (iii) a slow decline. In addition to the uncoated reference case, the investigation involves a coating made of porous zirconia, an established thermal swing material. With a coated setup, the projection of surface quantities (heat flux and temperature) from the immersed measurement location requires additional numerical analysis of conjugate heat transfer. Starting from the traces measured beneath the coating, the surface quantities are obtained by solving a one-dimensional inverse heat transfer problem. The present measurements are complemented by CFD simulations supplemented with recent rough-wall models. The surface roughness of the coated specimen is indicated to have a significant impact on the wall heat flux, offsetting the expected benefit from the thermal swing material.


Sign in / Sign up

Export Citation Format

Share Document