Ulm-12 and Ulm-19: The Hydrated and Anhydrous Forms of the First Synthetic Oxyfluorinated Iron Phosphate with an Open Structure

1996 ◽  
Vol 431 ◽  
Author(s):  
Myriam Cavellec ◽  
Didier Riou ◽  
Jean Marc Grenèche ◽  
Gérard Férey

AbstractULM-19 or [Fe4(PO4)4F2], [C6H14N2], was obtained in a monocrystalline form from the dehydration of single crystals of ULM-12, or [Fe4(PO4)4F2(H2O)3], [C6H14N2] at 260°C. It is monoclinic (S.G. P21/n) with a = 10.009(7), b = 12.235(8), c = 17.28(2) Å, β = 106.04(5)°, V = 2034(3) Å3, Z = 4. Its structure, which can be described from the corner sharing of hexameric Fe3P3 and dimeric FeP units, directly derives from that of ULM- 12 by the loss, on three of the four Fe(III) polyhedral sites of the structure of ULM-12, of the terminal water molecules. This induces drastic changes in the coordination polyhedra of Fe(III): three octahedra and one square pyramid in ULM-12, and one octahedron, one square pyramid, one trigonal bipyramid and one tetrahedron in ULM-19. These evolutions were confirmed and characterized by in situ Mössbauer spectrometry measurements using a cryofurnace. The loss of water opens 6-ring channels beside the 12-ring tunnels already existing in ULM-12.

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1403 ◽  
Author(s):  
Dominika Madej ◽  
Karina Tyrała

The hydration of an equimolar mixture of MgO and Al2O3 nano-powders has been proven to be an effective way to synthesize Mg6Al2CO3(OH)16∙4H2O as a component of a nano-structured matrix and magnesia-alumina spinel precursor for high-performance cement-free corundum-spinel refractory castables. (Mg3)–OH–brucite sites (417 °C) formed initially within the magnesia–alumina hydrating blended paste were replaced with (Mg2Al)–OH and (Mg3)–OH hydrotalcite sites, which were dehydroxylated at 420 °C and 322 °C, respectively. This reorganization was connected with the incorporation of anions and water molecules in the interlayer spacing of hydrotalcite, which was dehydrated at 234 °C. Hence, the thermal decomposition of a nano-structured matrix system containing mainly Mg6Al2CO3(OH)16∙4H2O consists of a complex sequence of dehydration, dehydroxylation and decarbonization, and this finally leads to the formation of inverse spinel MgAl2O4 and periclase MgO through many intermediate stages containing the mixed tetrahedral-octahedral Al phase and MgO-like structure. Hence, the hydraulic bond that primarily existed was replaced by a ceramic bond at a relatively low temperature, i.e., 700 °C, where a spinel was formed. Important changes in oxygen coordination polyhedra around Al3+ in the dehydrated-dehydroxylated hydrotalcite occurred between 600 and 1100 °C.


1994 ◽  
Vol 337 ◽  
Author(s):  
S. Degroote ◽  
T. Kobayashi ◽  
J. Dekoster ◽  
A. Vantomme ◽  
G. Langouche

ABSTRACTFe-Silicides were formed by annealing MBE-deposited thin Fe layers with a thickness in the range of 24 Å on (7x7) reconstructed Si(l11) substrates. Samples suitable for depth-selective investigations by CEMS (Conversion Electron Mössbauer Spectrometry) were prepared by using only the 57Fe isotope for a few monolayers of the total Fe film, and depositing these selectively right at the interface or separated from it. During the growth the substrate was held at room temperature. The silicide formation upon annealing to temperatures up to 900°C was monitored in situ with RHEED. From the CEMS studies a drastically different sample composition was inferred as a function of monolayer distance from the interface for the as-deposited samples and for annealing temperatures up to 400°C. Analysis of these spectra indicates the presence of metastable and stable iron silicides.


Author(s):  
Ilya V. Roslyakov ◽  
Andrei P. Chumakov ◽  
Andrei A. Eliseev ◽  
Alexey P. Leontiev ◽  
Oleg V. Konovalov ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (63-64) ◽  
pp. 4227-4232 ◽  
Author(s):  
S.V. Stefanovsky ◽  
O.I. Stefanovsky ◽  
M.I Kadyko ◽  
V.A. Zhachkin ◽  
L.D. Bogomolova

ABSTRACTGlasses of the series (mol.%) 40 Na2O, (20-x) Al2O3, x Fe2O3, 40 P2O5 were irradiated with 8 MeV electrons to doses equivalent of 0.1, 0.5, and 1.0 MGy and characterized by FTIR spectroscopy and ESR at room temperature. FTIR spectra of all the glasses consist of strong bands due to O-P-O stretching modes in (PO4)3- and (P2O7)4- units at 1000-1200 cm-1, P-O-P stretching modes at 900-950 cm-1 (νas) and 700-750 cm-1 (νs), and bending modes in the PO4 units. The wavenumber range lower 800 cm-1 has some contribution due to stretching modes in MO4 and MO6 (M = Al, Fe) units. Moreover the bands at 3300-3700 cm-1 and 1550-1650 cm-1 due to stretching and bending modes in both absorbed and structurally bound H2O molecules were present. As irradiation dose increases the bands due to stretching and bending modes in water molecules and M-O-H bonds become stronger and are split. No essential changes with increasing dose were observed within the spectral range of stretching modes of the O-P-O and P-O-P bonds. Irradiation yields phosphorus-oxygen hole centers - PO42- (D5) and PO42- (D6), and PO32- ion-radicals (D2) observable in ESR spectra of low-Fe glasses. At x>5 their responses are overlapped with strong broad line due to Fe(III). On the whole, with the increase in iron content the glass structural evolution decrease.


Sign in / Sign up

Export Citation Format

Share Document