spinel mgal2o4
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 23)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 121 ◽  
pp. 111496
Author(s):  
N. Mironova-Ulmane ◽  
M.G. Brik ◽  
J. Grube ◽  
G. Krieke ◽  
A. Antuzevics ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1524
Author(s):  
Behzad Sadeghi ◽  
Pasquale Cavaliere

The Al-Mg alloy structure reinforced with carbon nanotubes was evaluated after the composites production through a modified flake metallurgy technique followed by hot extrusion. The obtained bimodal microstructure of the matrix allowed to identify the microstructural mechanisms leading to high strength; uniform elongation and strain hardening ability of the produced composites. The presence of Mg transformed the native Al2O3 layer into spinel MgAl2O4 nano-phases dispersed both inside CG and UFGs and on the interfaces, improving the interfacial bonding of Al-Al as well as Al-CNT. The effect of the reinforcing phases percentages on the dislocations mechanisms evolution was evaluated through stress relaxation tests leading to the underlying of the effect of reinforcing phases on the modification of the interphase influence zone


2021 ◽  
Vol 4 (9) ◽  
pp. 9866-9875
Author(s):  
Yongdi Zhang ◽  
Shaowen Wu ◽  
Yuanzhi Li ◽  
An Zhang ◽  
Qianqian Hu ◽  
...  

Author(s):  
Oksana Borysenko ◽  
Sergey Logvinkov ◽  
Galina Shabanova ◽  
Alla Korohodska ◽  
Marina Ivashura ◽  
...  

Three-component systems constitute the physicochemical basis of most refractory materials and the analysis of their subsolidus structure makes it possible to accurately predict the areas of compositions with optimal properties, as well as give recommendations on the technological parameters of production, sintering, and operation of the materials obtained. As a result of the carried out thermodynamic analysis of the MgO – FeO – Al2O3 system, it was found that the partition of the system into elementary triangles undergoes changes in two temperature ranges: I – up to a temperature of 1141 K and II – above a temperature of 1141 K. By calculation methods, the geometrical-topological characteristics of the subsolidus structure of the system are determined MgO – FeO – Al2O3: areas of elementary triangles, degree of their asymmetry, area of regions in which phases exist, probability of phase existence in the system. It has been established that, over the entire temperature range, there is a fairly extended concentration region of spinel phases: hercynite (FeAl2O4) – noble spinel (MgAl2O4). Moreover, periclase (MgO) coexists simultaneously with both spinels only in the low-temperature region. This indicates that when obtaining periclase-spinel refractories with increased heat resistance, an important technological parameter is a cooling rate below 1141 K. To obtain periclase-spinel refractories with branched microcracking of the structure due to differences in the thermal expansion coefficients of periclase, hercynite and noble spinel, the most rational concentration region of the system under study is which is common for two elementary triangles (MgO – FeAl2O4 – MgAl2O4 and MgO – FeO – MgAl2O4) existing in different temperature ranges. At high firing temperatures, the elementary triangle MgO – FeO – MgAl2O4 has a maximum area and a minimum degree of asymmetry, and upon cooling, MgO – FeAl2O4 – MgAl2O4 is formed, which is quite large in area, but has a high degree of asymmetry. Therefore, the composition of the charge for periclase-spinel refractories should be predicted with a high dosage accuracy and with a significant homogenization time of the components during mixing, since the concentration region common for both of the above elementary triangles is significantly reduced. Thus, the division of the MgO – FeO – Al2O3 system into elementary triangles and the analysis of the geometrical-topological characteristics of the phases of the system made it possible to select in the system under study the range of compositions with optimal properties for obtaining spinel-containing materials.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5921
Author(s):  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Saleem ◽  
Bilal Alam Khan ◽  
Salman Raza Naqvi ◽  
...  

The study experimentally investigated a novel approach for producing hydrogen from methane cracking in dielectric barrier discharge catalytic plasma reactor using a nanocatalyst. Plasma-catalytic methane (CH4) cracking was undertaken in a dielectric barrier discharge (DBD) catalytic plasma reactor using Ni/MgAl2O4. The Ni/MgAl2O4 was synthesised through co-precipitation followed customised hydrothermal method. The physicochemical properties of the catalyst were examined using X-ray diffraction (XRD), scanning electron microscopy—energy dispersive X-ray spectrometry (SEM-EDX) and thermogravimetric analysis (TGA). The Ni/MgAl2O4 shows a porous structure spinel MgAl2O4 and thermal stability. In the catalytic-plasma methane cracking, the Ni/MgAl2O4 shows 80% of the maximum conversion of CH4 with H2 selectivity 75%. Furthermore, the stability of the catalyst was encouraging 16 h with CH4 conversion above 75%, and the selectivity of H2 was above 70%. This is attributed to the synergistic effect of the catalyst and plasma. The plasma-catalytic CH4 cracking is a promising technology for the simultaneous H2 and carbon nanotubes (CNTs) production for energy storage applications.


Author(s):  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Saleem ◽  
Bilal Alam Khan ◽  
Salman Raza Naqvi ◽  
...  

The study experimentally investigated a novel approach for producing hydrogen from methane cracking in dielectric barrier discharge catalytic plasma reactor using a nanocatalyst. Plasma-catalytic methane (CH4) cracking was undertaken in a dielectric barrier discharge (DBD) catalytic plasma reactor using Ni/MgAl2O4. The Ni/MgAl2O4 was synthesised through co-precipitation followed customised hydrothermal method. The physicochemical properties of the catalyst were examined using X-ray diffraction (XRD), scanning electron microscopy - energy dispersive X-ray spectrometry (SEM-EDX) and thermogravimetric analysis (TGA). The Ni/MgAl2O4 shows a porous structure spinel MgAl2O4 and thermal stability. In the catalytic-plasma methane cracking, the Ni/MgAl2O4 shows 80% of the maximum conversion of CH4 with H2 selectivity 75%. Furthermore, the stability of the catalyst was encouraging 16 hours with CH4 conversion above 75%, and the selectivity of H2 was above 70%. This is attributed to the synergistic effect of the catalyst and plasma. The plasma-catalytic CH4 cracking is a promising technology for the simultaneous H2 and carbon nanotubes (CNTs) production for energy storage applications.


2020 ◽  
Vol 21 (3) ◽  
pp. 545-551
Author(s):  
V.V. Subbotina ◽  
V.V. Belozerov

By the method of microarc oxidation for different types of electrolytes (which include KOH, Na2SiO3, Н2О2, NaOH, NaAlO2, Na5P3O10, NaF) and electrolysis conditions, multifunctional ceramic coatings on a magnesium alloy were obtained. The phase composition of the coating includes magnesium oxide (MgO), spinel MgAl2O4, Mg2SiO4 and Мg3(РО4)2 compounds. The phase composition of the coatings is determined by the composition of the electrolyte. The obtained MAO coatings provide high hardness, which is 1500 to 7300 MPa, as well as high corrosion resistance. The results obtained make it possible to recommend MAO coatings on magnesium alloys both as an external (functional) layer and for the formation of an underlayer for the subsequent application of protective coatings (varnishes, polymers, polytetrafluoroethylene, in particular).


Sign in / Sign up

Export Citation Format

Share Document