hole centers
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 7)

H-INDEX

25
(FIVE YEARS 1)

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1281
Author(s):  
Piotr Rychtowski ◽  
Beata Tryba ◽  
Hubert Fuks ◽  
Maria Ángeles Lillo-Ródenas ◽  
Maria Carmen Román-Martínez

TiO2 was placed in heat-treatment at the temperature of 400–500 °C under flow of hydrogen gas in order to introduce some titania surface defects. It was observed that hole centers in TiO2 were created during its heat treatment up to 450 °C, whereas at 500 °C some Ti3+ electron surface defects appeared. The type of titania surface defects had a great impact on the mechanism of acetaldehyde decomposition under irradiation of artificial visible light. Formation of O•− defects improved both acetaldehyde decomposition and mineralization due to the increased oxidation of adsorbed acetaldehyde molecules by holes. Contrary to that, the presence of electron traps and oxygen vacancies in titania (Ti3+ centers) was detrimental for its photocatalytic properties towards acetaldehyde decomposition. It was proved that transformation of acetaldehyde on the TiO2 with Ti3+ defects proceeded through formation of butene complexes, similar as on rutile-type TiO2. Formed acetic acid, upon further oxidation of butene complexes, was strongly bound with the titania surface and showed high stability under photocatalytic process. Therefore, titania sample heat-treated with H2 at 500 °C showed much lower photocatalytic activity than that prepared at 450 °C. This study indicated the great impact of titania surface defects (hole traps) in the oxidation of acetaldehyde and opposed one in the case of defects in the form of Ti3+ and oxygen vacancies. Oxidation abilities of TiO2 seem to be important in the photocatalytic decomposition of volatile organic compounds (VOCs) such as acetaldehyde.


2021 ◽  
Vol 5 (2) ◽  
pp. 140-147
Author(s):  
T.N. Nurakhmetov ◽  
Zh.M. Salikhodzha ◽  
M.Y. Dolomatov ◽  
B.N. Yussupbekova ◽  
A.M. Zhunusbekov ◽  
...  

In the present work, the emission and excitation spectra in Li2SO4-Cu crystals have been obtained by the methods of vacuum-ultraviolet and thermoactivation spectroscopy. We have studied the nature of emission from a pressed and annealed sample of Li2SO4-Cu powders. It has been revealed that at low temperatures Cu0-SO4--centers are formed during the trap of electrons by Cu+-centers and during localization of SO4--radicals in the form of localized hole centers.


2021 ◽  
Vol 141 ◽  
pp. 106521
Author(s):  
R. Chen ◽  
J.L. Lawless ◽  
V. Pagonis
Keyword(s):  

Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1101
Author(s):  
Mihail Secu ◽  
Corina Elisabeta Secu

An europium doped BaO–B2O3–BaCl2 chloroborate glass-ceramic containing a BaCl2 nanocrystalline phase was produced by melt-quenching followed by glass crystallization during annealing. Structural and morphological investigations using x-ray diffraction and scanning electron microscopy have shown fvBaCl2 nanocrystals of about tens of nm size accompanied by a smaller amount of the BaB2O4 crystalline phase. Photoluminescence spectra have indicated the reduction of Eu3+ to Eu2+ during processing in air or a reducing atmosphere. The spectra analysis showed the presence of Eu3+ ions in the borate glass matrix, while the Eu2+ were incorporated in both the BaCl2 nanocrystals and glass matrix. Thermoluminescence properties were due to the recombination of F(Cl) centers and Eu2+ related hole centers produced by irradiation within the BaCl2 nanocrystals. The color impression of the samples and the photoluminescence quantum efficiency were influenced by the glass processing.


2020 ◽  
Vol 105 (7) ◽  
pp. 1051-1059
Author(s):  
José R. Toledo ◽  
Raphaela de Oliveira ◽  
Lorena N. Dias ◽  
Mário L.C. Chaves ◽  
Joachim Karfunkel ◽  
...  

Abstract Montebrasite is a lithium aluminum phosphate mineral with the chemical formula LiAlPO4(Fx,OH1–x) and considered a rare gemstone material when exhibiting good crystallinity. In general, montebrasite is colorless, sometimes pale yellow or pale blue. Many minerals that do not have colors contain hydroxyl ions in their crystal structures and can develop color centers after ionization or particle irradiation, examples of which are topaz, quartz, and tourmaline. The color centers in these minerals are often related to O− hole centers, where the color is produced by bound small polarons inducing absorption bands in the near UV to the visible spectral range. In this work, colorless montebrasite specimens from Minas Gerais state, Brazil, were investigated by electron paramagnetic resonance (EPR) for radiation-induced defects and color centers. Although γ irradiation (up to a total dose of 1 MGy) did not visibly modify color, a 10 MeV electron irradiation (80 MGy) induced a pale greenish-blue color. Using EPR, O− hole centers were identified in both γ- or electron-irradiated montebrasite samples showing superhyperfine interactions with two nearly equivalent 27Al nuclei. In addition, two different Ti3+ electron centers were also observed. From the γ irradiation dose dependency and thermal stability experiments, it is concluded that production of O− hole centers is limited by simultaneous creation of Ti3+ electron centers located between two equivalent hydroxyl groups. In contrast, the concentration of O− hole centers can be strongly increased by high-dose electron irradiation independent of the type of Ti3+ electron centers. From detailed analysis of the EPR angular rotation patterns, microscopic models for the O− hole and Ti3+ electron centers are presented, as well as their role in the formation of color centers discussed and compared to other minerals.


2019 ◽  
Vol 122 ◽  
pp. 17-21 ◽  
Author(s):  
Roman Shendrik ◽  
Alexandra Myasnikova ◽  
Alexey Rupasov ◽  
Alexey Shalaev
Keyword(s):  

2018 ◽  
Vol 39 (10) ◽  
pp. 1359-1364
Author(s):  
王 超 WANG Chao ◽  
张一杨 ZHANG Yi-yang ◽  
张雅静 ZHANG Ya-jing ◽  
张国旭 ZHANG Guo-xu ◽  
王 蕾 WANG Lei

2016 ◽  
Vol 879 ◽  
pp. 3-8 ◽  
Author(s):  
Majid Reza Ayatollahi ◽  
Seyed Mohammad Javad Razavi ◽  
Christof Sommitsch ◽  
Christian Moser

Drilling holes in the vicinity of the crack tip turns the crack into a notch and reduces the crack tip stress intensity factor. In this paper, a new idea is used in which instead of a single hole, two symmetric and interconnected holes are drilled at the crack tip. The main concept of double stop-hole method is to reduce the stress concentration at the edge of stop-holes in the cracked structural elements. The double stop drill hole method can be used to increase the fatigue life of the cracked components. The fatigue crack growth retardation is examined using an experimental investigation coupled with a stress analysis on the efficiency of proposed double stop-holes. The distance between the hole centers is considered as the main parameter affecting the efficiency of this method. The results show that the fatigue life extension caused by the double stop-hole method is significantly more than the conventional single stop-hole method.


MRS Advances ◽  
2016 ◽  
Vol 1 (63-64) ◽  
pp. 4227-4232 ◽  
Author(s):  
S.V. Stefanovsky ◽  
O.I. Stefanovsky ◽  
M.I Kadyko ◽  
V.A. Zhachkin ◽  
L.D. Bogomolova

ABSTRACTGlasses of the series (mol.%) 40 Na2O, (20-x) Al2O3, x Fe2O3, 40 P2O5 were irradiated with 8 MeV electrons to doses equivalent of 0.1, 0.5, and 1.0 MGy and characterized by FTIR spectroscopy and ESR at room temperature. FTIR spectra of all the glasses consist of strong bands due to O-P-O stretching modes in (PO4)3- and (P2O7)4- units at 1000-1200 cm-1, P-O-P stretching modes at 900-950 cm-1 (νas) and 700-750 cm-1 (νs), and bending modes in the PO4 units. The wavenumber range lower 800 cm-1 has some contribution due to stretching modes in MO4 and MO6 (M = Al, Fe) units. Moreover the bands at 3300-3700 cm-1 and 1550-1650 cm-1 due to stretching and bending modes in both absorbed and structurally bound H2O molecules were present. As irradiation dose increases the bands due to stretching and bending modes in water molecules and M-O-H bonds become stronger and are split. No essential changes with increasing dose were observed within the spectral range of stretching modes of the O-P-O and P-O-P bonds. Irradiation yields phosphorus-oxygen hole centers - PO42- (D5) and PO42- (D6), and PO32- ion-radicals (D2) observable in ESR spectra of low-Fe glasses. At x>5 their responses are overlapped with strong broad line due to Fe(III). On the whole, with the increase in iron content the glass structural evolution decrease.


Sign in / Sign up

Export Citation Format

Share Document