Solar Cells from Mixed SiCi2H2 and SiH4 Plasmas

1997 ◽  
Vol 467 ◽  
Author(s):  
A. M. Payne ◽  
B. K. Crone ◽  
S. Wagner

ABSTRACTWe have deposited and analyzed solar cells from mixed SiCI2H2/SiH4 plasmas. Intrinsic and doped films were also grown to explain the cell results. The SiCI2H2 cells have lower fill factor and short circuit current density than the SiH4 cells due to the higher defect densities and lower photoconductivities of SiCI2H2/SiH4 material. Cell results showed low VQC if the n-layer was in contact with an i-layer deposited from SiCI2H2/SiH4. A pure silane buffer layer between the i- and n-layers was needed to attain the standard open circuit voltage. The reduced Voc results from a reduced conductivity of phosphorus-doped SiCI2H2/SiH4 material. However, comparison of doped films showed higher conductivities for boron-doped material grown from the SiCI2H2/SiH4 mixture than from pure silane.

2011 ◽  
Vol 23 (40) ◽  
pp. 4636-4643 ◽  
Author(s):  
Zhicai He ◽  
Chengmei Zhong ◽  
Xun Huang ◽  
Wai-Yeung Wong ◽  
Hongbin Wu ◽  
...  

Author(s):  
Nur Shakina Mohd Shariff ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamad Rusop Mahmood

There has been an increasing interest towards organic solar cells after the discovery of conjugated polymer and bulk-heterojunction concept. Eventhough organic solar cells are less expensive than inorganic solar cells but the power conversion energy is still considered low. The main objective of this research is to investigate the effect of the P3HT’s thickness and concentration towards the efficiency of the P3HT:Graphene solar cells. A simulation software that is specialize for photovoltaic called SCAPS is used in this research to simulate the effect on the solar cells. The solar cell’s structure will be drawn inside the simulation and the parameters for each layers is inserted. The result such as the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), efficiency (η), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristic will be calculated by the software and all the results will be put into one graph.


2004 ◽  
Vol 11 (06) ◽  
pp. 569-575 ◽  
Author(s):  
M. RUSOP ◽  
T. SOGA ◽  
T. JIMBO ◽  
M. UMENO

The phosphorus doped n -type ( n - C : P ) carbon films and fabrication of n - C : P / p - Si heterojunction solid-state solar cells by pulsed laser deposition (PLD) technique at room temperature using graphite target have been studied. The P atoms incorporated in the films were determined by X-ray photoelectron spectroscopy (XPS) to be in the range of 0.22–1.77 atomic percentages. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm2, 25°C). The open circuit voltage ( V oc ) and short circuit current density ( J sc ) for the cells are observed to vary from 215 to 265 mV and from 7.5 to 10.5 mA/cm2, respectively. The cell fabricated using the target with the amount of P by 7 weight percentages (Pwt%) shows the highest energy conversion efficiency, η=1.14% and fill factor, FF =41%. In this paper, the dependence of P content on the electrical and optical properties of the deposited n - C : P films and the photovoltaic characteristic of the n - C : P / p - Si cells are reported.


2005 ◽  
Vol 12 (01) ◽  
pp. 19-25 ◽  
Author(s):  
M. RUSOP ◽  
M. ADACHI ◽  
T. SOGA ◽  
T. JIMBO

Phosphorus-doped amorphous carbon (n-C:P) films were grown by r. f.-power-assisted plasma-enhanced chemical vapor deposition at room temperature using a novel solid red phosphorus target. The influence of phosphorus doping on material properties of n-C:P based on the results of simultaneous characterization are reported. Moreover, the solar cell properties such as series resistance, short circuit current density, open circuit current voltage, fill factor and conversion efficiency along with the spectral response are reported for the fabricated carbon-based n-C:P/p-Si heterojunction solar cell that was measured by standard measurement technique. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm 2, 25°C). The maximum of open-circuit voltage (V oc ) and short-circuit current density (J sc ) for the cells are observed to be approximately 236 V and 7.34, mAcm 2 respectively for the n-C:P/p-Si cell grown at lower r. f. power of 100 W. The highest energy conversion efficiency (η) and fill factor (FF) were found to be approximately 0.84% and 49%, respectively. We have observed that the rectifying nature of the heterojunction structures is due to the nature of n-C:P films.


2014 ◽  
Vol 665 ◽  
pp. 111-114 ◽  
Author(s):  
Ying Huang ◽  
Xiao Ming Shen ◽  
Xiao Feng Wei

In this paper, InAlN/Si single-heterojunction solar cells have been theoretically simulated based on wxAMPS software. The photovoltaic parameters, such as open circuit voltage, short circuit current, fill factor and conversion efficiency were investigated with changing the indium content and thickness of n-InAlN layer. Simulation results show that the optimum efficiency of InAlN/Si solar cells is 23.1% under AM 1.5G spectral illuminations, with the indium content and thickness of n-InAlN layer are 0.65 and 600nm, respectively. The simulation would contribute to design and fabricate high efficiency InAlN/Si solar cells in experiment.


2015 ◽  
Vol 25 (2) ◽  
pp. 139
Author(s):  
Tran Thi Thao ◽  
Vu Thi Hai ◽  
Nguyen Nang Dinh ◽  
Le Dinh Trong

By using spin-coating technique, a low bandgap conjugated polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopen-ta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT)  and its composite thin films have been prepared. The optical absorption and photoconductive properties with over a wide spectral range, from 350 to 950  nm, were characterized. The obtained results showed that PCPDTBT:10 wt% CdSe  composite is the most suitable for efficient light-harvesting in polymer-based photovoltaic cells. The photoelectrical conversion efficiency (PCE) of the device with  a multilayer structure of ITO/PEDOT/ PCPDTBT:CdSe /LiF/Al  reached a value as large as 1.34% with an open-circuit voltage (Voc) = 0.57 V, a short-circuit current density (Jsc) = 4.29 mA/cm2, and a fill factor (FF) = 0.27. This suggests a useful application in further fabrication of quantum dots/polymers based solar cells.


2021 ◽  
Vol 5 (3) ◽  
pp. 242-250
Author(s):  
D. Sergeyev ◽  
K. Shunkeyev ◽  
B. Kuatov ◽  
N. Zhanturina

In this paper, the features of the characteristics of model thin-film solar cells based on the non-toxic multicomponent compound CuZn2AlS4 (CZAS) are considered. The main parameters (open-circuit voltage, short-circuit current, fill factor, efficiency) and characteristics (quantum efficiency, current-voltage characteristic) of thin-film solar cells based on CZAS have been determined. The minimum optimal thickness of the CZAS absorber is found (1-1.25 microns). Deterioration of the performance of solar cells with an increase in operating temperature (280-400 K) is shown. It is revealed that in the wavelength range of 390-500 nm CZAS has a high external quantum efficiency, which allows its use in designs of multi-junction solar cells designed to absorb solar radiation in the specified range. It is shown that the combination of CZAS films with a buffer layer of non-toxic ZnS increases the performance of solar cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2434
Author(s):  
Zhanwu Wang ◽  
Dongyue Jiang ◽  
Fancong Zeng ◽  
Yingrui Sui

In this study, we prepared Na-doped Cu2ZnSn(S,Se)4 [noted as (Na0.1Cu0.9)2ZnSn(S,Se)4] films on the Mo substrate using a simple and cheap sol–gel method together with the post-annealing technique. The effects of selenization temperature on the properties of Na-doped Cu2ZnSn(S,Se)4 were surveyed. The results indicated that some sulfur atoms in the films were substituted by selenium atoms by increasing the selenization temperature, and all films selenized at different temperatures had a kesterite structure. As the selenization temperature increased from 520 to 560 °C, the band gaps of the film can be tuned from 1.03 to 1 eV. The film with better morphology and opto-electrical properties can be obtained at an intermediate selenization temperature range (e.g., 540 °C), which had the lowest resistivity of 47.7 Ω cm, Hall mobility of 4.63 × 10−1 cm2/Vs, and carrier concentration of 2.93 × 1017 cm−3. Finally, the best power conversion efficiency (PCE) of 4.82% was achieved with an open circuit voltage (Voc) of 338 mV, a short circuit current density (Jsc) of 27.16 mA/cm2 and a fill factor (FF) of 52.59% when the selenization temperature was 540 °C.


2011 ◽  
Vol 1321 ◽  
Author(s):  
Xiaodan Zhang ◽  
Guanghong Wang ◽  
Shengzhi Xu ◽  
Shaozhen Xiong ◽  
Xinhua Geng ◽  
...  

ABSTRACTLight-induced metastability of amorphous/microcrystalline (micromorph) silicon tandem solar cell, in which the microcrystalline bottom cell was deposited in a single-chamber system, has been studied under a white light for more than 1000 hours. Two different light-induced metastable behaviors were observed. The first type was the conventional light-induced degradation, where the open-circuit voltage (Voc), fill factor (FF), and short-circuit current density (Jsc) were degraded, hence the efficiency was degraded as well. This phenomenon was observed mainly in the tandem cells with a bottom cell limited current mismatch. The second type was with a light-induced increase in Voc, which sometimes resulted in an increase in efficiency. The second type of light-induced metastability was observed in the tandem cells with a top cell limited current mismatch. The possible mechanisms for these phenomena are discussed.


Sign in / Sign up

Export Citation Format

Share Document