scholarly journals Prototype Imaging CD-ZN-TE Array Detector

1997 ◽  
Vol 487 ◽  
Author(s):  
P. F. Bloser ◽  
T. Narita ◽  
J. E. Grindlay ◽  
K. Shah

AbstractWe describe initial results of our program to develop and test Cd-Zn-Te (CZT) detectors with a pixellated array readout. Our primary interest is in the development of relatively thick CZT detectors for use in astrophysical coded aperture telescopes with response extending over the energy range ∼ 10 – 600 keV. The coded aperture imaging configuration requires only relatively large area pixels (1–3 mm), whereas the desired high energy response requires detector thicknesses of at least 3–5 mm. We have developed a prototype detector employing a 10 × 10 × 5 mm CZT substrate and 4 × 4 pixel (1.5 mm each) readout with gold metal contacts for the pixels and continuous gold contact for the bias on the opposite detector face. This MSM contact configuration was fabricated by RMD and tested at Harvard for uniformity, efficiency and spatial as well as spectral resolution. We have developed an ASIC readout (IDE-VA-1) and analysis system and report results, including ∼ 4% (FWHM) energy resolution at 60 keV. A prototype design for a full imaging detector array is discussed.

2004 ◽  
Author(s):  
Jae Sub Hong ◽  
Santosh V. Vadawale ◽  
Minhua Zhang ◽  
Eric C. Bellm ◽  
Andrew Yousef ◽  
...  

2008 ◽  
Author(s):  
Mark E. McNie ◽  
David O. King ◽  
Nicola Price ◽  
David J. Combes ◽  
Gilbert W. Smith ◽  
...  

Author(s):  
C. C. Ahn ◽  
S. Karnes ◽  
M. Lvovsky ◽  
C. M. Garland ◽  
H. A. Atwater ◽  
...  

The bane of CCD imaging systems for transmission electron microscopy at intermediate and high voltages has been their relatively poor modulation transfer function (MTF), or line pair resolution. The problem originates primarily with the phosphor screen. On the one hand, screens should be thick so that as many incident electrons as possible are converted to photons, yielding a high detective quantum efficiency(DQE). The MTF diminishes as a function of scintillator thickness however, and to some extent as a function of fluorescence within the scintillator substrates. Fan has noted that the use of a thin layer of phosphor beneath a self supporting 2μ, thick Al substrate might provide the most appropriate compromise for high DQE and MTF in transmission electron microcscopes which operate at higher voltages. Monte Carlo simulations of high energy electron trajectories reveal that only little beam broadening occurs within this thickness of Al film. Consequently, the MTF is limited predominantly by broadening within the thin phosphor underlayer. There are difficulties however, in the practical implementation of this design, associated mostly with the mechanical stability of the Al support film.


2020 ◽  
Vol 639 ◽  
pp. A80
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Yun-Feng Liang ◽  
Fang-Kun Peng ◽  
Hai-Ming Zhang ◽  
...  

We report the detection of high-energy γ-ray signal towards the young star-forming region, W40. Using 10-yr Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended γ-ray excess region with a significance of ~18σ. The radiation has a spectrum with a photon index of 2.49 ± 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the γ-ray emission. The total cosmic-ray (CR) proton energy in the γ-ray production region is estimated to be the order of 1047 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of γ-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the γ-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding “cocoons”.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


2013 ◽  
Vol 777 (1) ◽  
pp. L18 ◽  
Author(s):  
Y. T. Tanaka ◽  
C. C. Cheung ◽  
Y. Inoue ◽  
Ł. Stawarz ◽  
M. Ajello ◽  
...  

2008 ◽  
Vol 1069 ◽  
Author(s):  
Ryoji Kosugi ◽  
Toyokazu Sakata ◽  
Yuuki Sakuma ◽  
Tsutomu Yatsuo ◽  
Hirofumi Matsuhata ◽  
...  

ABSTRACTIn practical use of the SiC power MOSFETs, further reduction of the channel resistance, high stability under harsh environments, and also, high product yield of large area devices are indispensable. Pn diodes with large chip area have been already reported with high fabrication yield, however, there is few reports in terms of the power MOSFETs. To clarify the difference between the simple pn diodes and power MOSFETs, we have fabricated four pn-type junction TEGs having the different structural features. Those pn junctions are close to the similar structure of DIMOS (Double-implanted MOS) step-by-step from the simple pn diodes. We have surveyed the V-I characteristics dependence on each structural features over the 2inch wafer. Before their fabrication, we formed grid patterns with numbering over the 2inch wafer, then performed the synchrotron x-ray topography observation. This enables the direct comparison the electrical and spectrographic characteristics of each pn junctions with the fingerprints of defects.Four structural features from TypeA to TypeD are as follows. TypeA is the most simple structure as same as the standard pn diodes formed by Al+ ion implantation (I/I), except that the Al+ I/I condition conforms to that of the p-well I/I in the DIMOS. The JTE structure was used for the edge termination on all junctions. While the TypeA consists of one p-type region, TypeB and TypeC consists of a lot of p-wells. The difference of Type B and C is a difference of the oxide between the adjacent p-wells. The oxide of TypeB consists of the thick field oxide, while that of TypeC consists of the thermal oxide corresponding to the gate oxide in the DIMOS. In the TypeD structure, n+ region corresponding to the source in the DIMOS was added by the P+ I/I. The TypeD is the same structure of the DIMOS, except that the gate and source contacts are shorted. The V-I measurements of the pn junctions are performed using the KEITHLEY 237 voltage source meters with semi-auto probe machine. An active area of the fabricated pn junctions TEGs are 150um2 and 1mm2. Concentration and thickness of the drift layer are 1e16cm−3 and 10um, respectively.In order to compare the V-I characteristics of fabricated pn junctions with their defects information that obtained from x-ray topography measurements directly, the grid patterns are formed before the fabrication. The grid patterns were formed over the 2inch wafer by the SiC etching. The synchrotron x-ray topography measurements are carried out at the Beam-Line 15C in Photon-Factory in High-Energy-Accelerator-Research-Organization. Three diffraction conditions, g=11-28, -1-128, and 1-108, are chosen in grazing-incidence geometry (improved Berg-Barrett method).In the presentation, the V-I characteristics mapping on the 2inch wafer for each pn junctions, and the comparison of V-I characteristics with x-ray topography will be reported.


Sign in / Sign up

Export Citation Format

Share Document