Chemical Control of Noble Metal Catalysis by Main Group Elements

1997 ◽  
Vol 497 ◽  
Author(s):  
K. Asakura ◽  
K. Okumura ◽  
T. Inoue ◽  
T. Kubota ◽  
W-J. Chun ◽  
...  

ABSTRACTThe catalytic interaction of noble metal and main group elements in Rh/one-atomic layer GeO2/SiO2 and Pt/SbOx was investigated. The high temperature reduction produced RhGe and PtSb bimetallic particles in which Pt and Rh were electronically modified to retard catalytic activity. However, unique selective catalyses of Rh/one-atomic layer GeO2/SiO2 for CO hydrogenation reaction to oxygenate compounds and for NO+CO reaction to N2 were found. Under the low temperature reduction of Rh/one-atomic layer GeO2/SiO2 and the high temperature calcination of Pt/SbOx, the oxide phases, GeO2 and SbOx, were stable and the selective reduction of ethylacetate to ethanol and the selective oxidation of iso-C4H10 to methacrolein were observed. The high selectivities were ascribed to synergistic interaction between the noble metals and the main group element oxides through the diffusion of adsorbed species and reaction intermediates. The possibility of chemical control of noble metal-catalyses by main group elements is discussed.

2010 ◽  
Vol 82 (3) ◽  
pp. 505-521 ◽  
Author(s):  
Takahiro Tsuchiya ◽  
Takeshi Akasaka ◽  
Shigeru Nagase

This paper describes the convenient method of isolating endohedral metallofullerenes by means of selective reduction from carbon soot extracts. Successful isolation in large amount by utilizing this method allows examination of the selective chemical modification of monometallofullerenes. Furthermore, isolation of missing metallofullerenes as their derivatives is also mentioned.


1987 ◽  
Author(s):  
Alois Haas ◽  
Dieter Koschel ◽  
Ulrich Niemann

2019 ◽  
Author(s):  
Michele Pizzocchero ◽  
Matteo Bonfanti ◽  
Rocco Martinazzo

The manuscript addresses the issue of the structural distortions occurring at multiple bonds between high main group elements, focusing on group 14. These distortions are known as trans-bending in silenes, disilenes and higher group analogues, and buckling in 2D materials likes silicene and germanene. A simple but correlated \sigma + \pi model is developed and validated with first-principles calculations, and used to explain the different behaviour of second- and higher- row elements.


2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Sujing Yu ◽  
Yan Yang ◽  
Qi Li ◽  
Tingting Li ◽  
...  

In this paper, the effects of five noble metals (Au, Pt, Pd, Ag, Ru) doped MoSe2 on improving gas sensing performance were predicted through density functional theory (DFT) based on...


2020 ◽  
Vol 2020 ◽  
pp. 1-24 ◽  
Author(s):  
Carmen Cretu ◽  
Loredana Maiuolo ◽  
Domenico Lombardo ◽  
Elisabeta I. Szerb ◽  
Pietro Calandra

The involvement of metal ions within the self-assembly spontaneously occurring in surfactant-based systems gives additional and interesting features. The electronic states of the metal, together with the bonds that can be established with the organic amphiphilic counterpart, are the factors triggering new photophysical properties. Moreover, the availability of stimuli-responsive supramolecular amphiphile assemblies, able to disassemble in a back-process, provides reversible switching particularly useful in novel approaches and applications giving rise to truly smart materials. In particular, small amphiphiles with an inner distribution, within their molecular architecture, of various polar and apolar functional groups, can give a wide variety of interactions and therefore enriched self-assemblies. If it is joined with the opportune presence and localization of noble metals, whose chemical and photophysical properties are undiscussed, then very interesting materials can be obtained. In this minireview, the basic concepts on self-assembly of small amphiphilic molecules with noble metals are shown with particular reference to the photophysical properties aiming at furnishing to the reader a panoramic view of these exciting problematics. In this respect, the following will be shown: (i) the principles of self-assembly of amphiphiles that involve noble metals, (ii) examples of amphiphiles and amphiphile-noble metal systems as representatives of systems with enhanced photophysical properties, and (iii) final comments and perspectives with some examples of modern applications.


2020 ◽  
Vol 22 (48) ◽  
pp. 28423-28433
Author(s):  
Yu Wang ◽  
Chun-Guang Liu

An emerging class of compounds, bis(Lewis base)borylenium diradicals with an electron-rich boron(i) center, are potential metal-free catalysts for dinitrogen activation and reduction.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Giyaullah Habibullah ◽  
Jitka Viktorova ◽  
Tomas Ruml

AbstractNoble metals have played an integral part in human history for centuries; however, their integration with recent advances in nanotechnology and material sciences have provided new research opportunities in both academia and industry, which has resulted in a new array of advanced applications, including medical ones. Noble metal nanoparticles (NMNPs) have been of great importance in the field of biomedicine over the past few decades due to their importance in personalized healthcare and diagnostics. In particular, platinum, gold and silver nanoparticles have achieved the most dominant spot in the list, thanks to a very diverse range of industrial applications, including biomedical ones such as antimicrobial and antiviral agents, diagnostics, drug carriers and imaging probes. In particular, their superior resistance to extreme conditions of corrosion and oxidation is highly appreciated. Notably, in the past two decades there has been a tremendous advancement in the development of new strategies of more cost-effective and robust NMNP synthesis methods that provide materials with highly tunable physicochemical, optical and thermal properties, and biochemical functionalities. As a result, new advanced hybrid NMNPs with polymer, graphene, carbon nanotubes, quantum dots and core–shell systems have been developed with even more enhanced physicochemical characteristics that has led to exceptional diagnostic and therapeutic applications. In this review, we aim to summarize current advances in the synthesis of NMNPs (Au, Ag and Pt).


Sign in / Sign up

Export Citation Format

Share Document