Self-Assembly of Meso- and Nanoparticles into 3d Ordered Arrays and its Applications

1999 ◽  
Vol 576 ◽  
Author(s):  
Byron Gates ◽  
Younan Xia

ABSTRACTThis presentation describes a simple and practical method for self-assembling meso- and nanoparticles into three-dimensionally ordered lattices (opals) over large areas, and the use of these lattices as templates in fabricating highly ordered porous structures such as inverse opals. This method has been applied to a variety of colloidal particles, including silica colloids and polymer beads with diameters in the range of˜50 nm to ˜50 μm. Templating against the 3D opaline lattices provides an effective route to inorganic-organic composite materials and inverse opals having 3D periodic structures.

2014 ◽  
Vol 699 ◽  
pp. 318-324 ◽  
Author(s):  
Syara Kassim ◽  
S. Padmanabhan ◽  
J. McGrath ◽  
M.E. Pemble

The bottom-up colloidal synthesis of photonic band gap (PBG) materials or photonic crystals (PC) has attracted considerable interest as compared to so-called top-down lithographic approaches due to the simple processing steps involved and the prospect of the economically viable production of complex 3-dimensional optical materials from simple colloidal particles. To date self-assembly techniques constitute the most popular approach to fabricate 3D photonic crystals from colloidal particle suspensions. Based on the natural tendency of monodisperse colloidal particles to organise into ordered arrays, this method represent the best option due to the ease of fabrication, ability to produce larger area samples and cost. Here we report on the fabrication of long range three-dimensional (3D) ordered poly (methyl methacrylate) (PMMA)-silica PC structures and the subsequent fabrication of robust silica inverse opals using self-assembly methods. The optical properties of these materials are described and discussed in terms of potential applications of these materials.


2000 ◽  
Vol 122 (14) ◽  
pp. 3530-3531 ◽  
Author(s):  
Limin Huang ◽  
Zhengbao Wang ◽  
Jinyu Sun ◽  
Lei Miao ◽  
Quanzhi Li ◽  
...  

1999 ◽  
Vol 571 ◽  
Author(s):  
Byron Gates ◽  
Ziyi Zhong ◽  
Younan Xia

ABSTRACTTwo methods are presented which have been successfully used to fabricate highly ordered 2D and 3D arrays of nano-scale particles. The first method uses a combination of microcontact printing (μCP) and surface-templated reactions to form 2D patterned arrays of nanoparticles on silicon substrates. The second method uses confined self-assembly to crystallize colloidal particles into 3D cubic-close-packed (ccp) arrays (or opaline structures).


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2020 ◽  
Vol 27 (9) ◽  
pp. 923-929
Author(s):  
Gaurav Pandey ◽  
Prem Prakash Das ◽  
Vibin Ramakrishnan

Background: RADA-4 (Ac-RADARADARADARADA-NH2) is the most extensively studied and marketed self-assembling peptide, forming hydrogel, used to create defined threedimensional microenvironments for cell culture applications. Objectives: In this work, we use various biophysical techniques to investigate the length dependency of RADA aggregation and assembly. Methods: We synthesized a series of RADA-N peptides, N ranging from 1 to 4, resulting in four peptides having 4, 8, 12, and 16 amino acids in their sequence. Through a combination of various biophysical methods including thioflavin T fluorescence assay, static right angle light scattering assay, Dynamic Light Scattering (DLS), electron microscopy, CD, and IR spectroscopy, we have examined the role of chain-length on the self-assembly of RADA peptide. Results: Our observations show that the aggregation of ionic, charge-complementary RADA motifcontaining peptides is length-dependent, with N less than 3 are not forming spontaneous selfassemblies. Conclusion: The six biophysical experiments discussed in this paper validate the significance of chain-length on the epitaxial growth of RADA peptide self-assembly.


Soft Matter ◽  
2020 ◽  
Vol 16 (28) ◽  
pp. 6599-6607 ◽  
Author(s):  
Pijush Singh ◽  
Souvik Misra ◽  
Nayim Sepay ◽  
Sanjoy Mondal ◽  
Debes Ray ◽  
...  

The self-assembly and photophysical properties of 4-nitrophenylalanine (4NP) are changed with the alteration of solvent and final self-assembly state of 4NP in competitive solvent mixture and are dictated by the solvent ratio.


2019 ◽  
Vol 4 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Ryan T. Shafranek ◽  
Joel D. Leger ◽  
Song Zhang ◽  
Munira Khalil ◽  
Xiaodan Gu ◽  
...  

Directed self-assembly in polymeric hydrogels allows tunability of thermal response and viscoelastic properties.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


Sign in / Sign up

Export Citation Format

Share Document