Site Characterization for Field Radionuclide Migration Studies in Climax Granite

1981 ◽  
Vol 6 ◽  
Author(s):  
Dana Isherwood ◽  
Ellen Raber ◽  
Randolph Stone

ABSTRACTRadionuclide migration experiments in fractured granite at the Climax Stock, Nevada Test Site, are needed to compare field and laboratory measured retardation factors to determine whether laboratory studies accurately reflect in situ conditions. Initial field activities have concentrated on hydrological investigations to determine whether the fractures in Climax granite are suitable for migration experiments. A critical question was whether we could isolate a single vertical fracture between two boreholes and establish flow along that fracture from an upper to a lower borehole. Of the ten fractures tested, one fracture would not take water at pressures up to 200 psig for 24 hours. Several fractures were so permeable they accepted water at a rate which exceeded the pumping capacity of the equipment. Other fractures failed to show a connection between the two boreholes. In two fractures, we were able to establish a circulating system with up to 95 percent of the injected water being recovered. Constant pressure injection tests were conducted. Intrinsic permeabilities of 33 and 75 (μm)2 were estimated using a radial nonsteady flow model. These values correspond to effective fracture apertures of 20 and 30 μm respectively. Concurrent with the hydraulic testing activities is a study of the Climax ground-water chemistry. Our analyses show the natural water to be very different in composition from the granite equilibrated water used in laboratory sorption studies. This paper includes the results of the hydrogeological and geochemical investigations, and describes the overall experimental design plans for the radionuclide migration experiments.

1991 ◽  
Vol 52-53 (1) ◽  
Author(s):  
R. W. Buddemeier ◽  
R. C. Finkel ◽  
Κ. V. Marsh ◽  
M. R. Ruggieri ◽  
J. H. Rego ◽  
...  

2020 ◽  
Author(s):  
Carolin Boese ◽  
joerg Renner ◽  
Georg Dresen ◽  

<p><span>Between early 2018 and late 2019 the STIMTEC hydraulic stimulation experiment was performed at ca.~130 m below surface at the Reiche Zeche research mine in Freiberg, Saxony/Germany. The project aims at gaining insight into the creation and growth of fractures in anisotropic and heterogeneous crystalline rock units, to develop and optimise hydraulic stimulation techniques and to control the associated induced seismicity under in situ conditions at the mine-scale. These aspects of failure and associated seismicity are important for the development of enhanced geothermal energy systems. We present the infrastructure developed for the STIMTEC experiment and provide an overview of the obtained data, including 295 m of core material retrieved from 17 boreholes, 225 m of acoustic TV log, >50 TB of continuous passive seismic data from four field stimulation and hydraulic testing campaigns, as well as ~300 active velocity calibration measurements. </span></p><p><span>W</span><span>e highlight some of the first results regarding the hydro-mechanical and seismic response to the stimulation, the rock mass characterisation in-situ and in the laboratory, as well as 3-D numerical modelling of the stress state and fracturing. The heterogeneity and anisotropy of the strongly foliated metamorphic gneiss significantly affects fracture creation and propagation </span><span>in the experiment.</span></p>


Sign in / Sign up

Export Citation Format

Share Document