Convergent-Beam Diffraction in the Characterization of Crystalline Phases

1985 ◽  
Vol 62 ◽  
Author(s):  
J. A. Eades ◽  
M. J. Kaufman ◽  
H. L. Fraser

ABSTRACTConvergent-beam diffraction in the transmission electron microscope is a powerful technique for the characterization of crystalline materials. Examples are presented to show the way in which convergent-beam zone-axis patterns can be used to determine: the unit cell; the symmetry; the strain of a crystal. The patterns are also recognizable and so can be used, like fingerprints, to identify phases.

2011 ◽  
Vol 19 (1) ◽  
pp. 72-72 ◽  
Author(s):  
Alwyn Eades

There are two principal techniques for obtaining diffraction patterns in the transmission electron microscope (TEM). They are selected-area diffraction (SAD) and convergent-beam diffraction (CBED). CBED is quicker and easier to use, and it provides a much richer characterization of the sample. Thus, it is clear that CBED should be used in the vast majority of cases. It should be the diffraction technique that students learn first, and students should be taught to consider it the standard method of doing diffraction in the TEM.


2013 ◽  
Vol 21 (2) ◽  
pp. 40-40
Author(s):  
Lydia Rivaud

Central to the operation of the transmission electron microscope (TEM) (when used with crystalline samples) is the ability to go back and forth between an image and a diffraction pattern. Although it is quite simple to go from the image to a convergent-beam diffraction pattern or from an image to a selected-area diffraction pattern (and back), I have found it useful to be able to go between image and diffraction pattern even more quickly. In the method described, once the microscope is set up, it is possible to go from image to diffraction pattern and back by turning just one knob. This makes many operations on the microscope much more convenient. It should be made clear that, in this method, neither the image nor the diffraction pattern is “ideal” (details below), but both are good enough for many necessary procedures.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


Author(s):  
W. T. Pike

With the advent of crystal growth techniques which enable device structure control at the atomic level has arrived a need to determine the crystal structure at a commensurate scale. In particular, in epitaxial lattice mismatched multilayers, it is of prime importance to know the lattice parameter, and hence strain, in individual layers in order to explain the novel electronic behavior of such structures. In this work higher order Laue zone (holz) lines in the convergent beam microdiffraction patterns from a thermal emission transmission electron microscope (TEM) have been used to measure lattice parameters to an accuracy of a few parts in a thousand from nanometer areas of material.Although the use of CBM to measure strain using a dedicated field emission scanning transmission electron microscope has already been demonstrated, the recording of the diffraction pattern at the required resolution involves specialized instrumentation. In this work, a Topcon 002B TEM with a thermal emission source with condenser-objective (CO) electron optics is used.


2017 ◽  
Vol 2 (3) ◽  
pp. 174-185 ◽  
Author(s):  
Hu Zhao ◽  
Bao Qiu ◽  
Haocheng Guo ◽  
Kai Jia ◽  
Zhaoping Liu ◽  
...  

2000 ◽  
Vol 6 (S2) ◽  
pp. 228-229
Author(s):  
M. A. Schofield ◽  
Y. Zhu

Quantitative off-axis electron holography in a transmission electron microscope (TEM) requires careful design of experiment specific to instrumental characteristics. For example, the spatial resolution desired for a particular holography experiment imposes requirements on the spacing of the interference fringes to be recorded. This fringe spacing depends upon the geometric configuration of the TEM/electron biprism system, which is experimentally fixed, but also upon the voltage applied to the biprism wire of the holography unit, which is experimentally adjustable. Hence, knowledge of the holographic interference fringe spacing as a function of applied voltage to the electron biprism is essential to the design of a specific holography experiment. Furthermore, additional instrumental parameters, such as the coherence and virtual size of the electron source, for example, affect the quality of recorded holograms through their effect on the contrast of the holographic fringes.


ACS Nano ◽  
2016 ◽  
Vol 10 (1) ◽  
pp. 1475-1480 ◽  
Author(s):  
Qing Wang ◽  
Ryo Kitaura ◽  
Shoji Suzuki ◽  
Yuhei Miyauchi ◽  
Kazunari Matsuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document