Plasticity at Crack Tips in Zr-Based Bulk Metallic Glasses

2000 ◽  
Vol 644 ◽  
Author(s):  
Jing Li ◽  
Xiaofeng Gu ◽  
Li-Qian Xing ◽  
Ken Livi ◽  
T. C. Hufnagel

AbstractWe have examined the structure of plastic deformation zones ahead of the tips of microcracks in Zr-based bulk metallic glass Zr57Ti5Cu20Ni8Al10. We have used an axially aligned dark field transmission electron microscopy technique, with the objective aperture placed to form images using electrons from several different areas of the diffraction patterns. We also compared Fourier transforms of the high resolution transmission electron microscopy images of deformed and undeformed regions to extract additional structural information. The plastic zones produce enhanced low-angle scattering of electrons and an apparent broadening of the amorphous halo, suggesting increased disorder and the presence of voids in the deformed zones. These results are consistent with an increased degree of atomic-scale disorder and enhanced free volume in highly deformed regions, which may provide a partial explanation of the manner in which plastic deformation occurs in metallic glasses.

2009 ◽  
Vol 24 (8) ◽  
pp. 2596-2604 ◽  
Author(s):  
Sašo Šturm ◽  
Makoto Shiojiri ◽  
Miran Čeh

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.


2017 ◽  
Vol 50 (3) ◽  
pp. 795-804 ◽  
Author(s):  
Jiangkun Fan ◽  
Jinshan Li ◽  
Yudong Zhang ◽  
Hongchao Kou ◽  
Jaafar Ghanbaja ◽  
...  

For the β phase of Ti-5553-type metastable β-Ti alloys, striations in transmission electron microscopy (TEM) bright- and dark-field images have been frequently observed but their origin has not been sufficiently investigated. In the present work, this phenomenon is studied in depth from the macroscopic scale by neutron diffraction to the atomic scale by high-resolution TEM. The results reveal that the β phase contains homogeneously distributed modulated structures, intermediate between that of the β phase (cubic) and that of the α phase or the ω phase (hexagonal), giving rise to the appearance of additional diffraction spots at 1/2, 1/3 and 2/3 β diffraction positions. The intermediate structure between β and α is formed by the atomic displacements on each second {110}βplane in the \langle 1{\overline 1}0\rangle_{\beta} direction, whereas that between β and ω is formed by atomic displacements on each second and third {112}βplane in the opposite \langle 11{\overline 1}\rangle_{\beta } direction. Because of these atomic displacements, the {110}βand {112}βplanes become faulted, resulting in the streaking of β diffraction spots and the formation of extinction fringes in TEM bright- and dark-field images, the commonly observed striations. The present work reveals the origin of the striations and the intrinsic correlation with the additional electron reflections of the β phase.


2009 ◽  
Vol 283-286 ◽  
pp. 453-457
Author(s):  
Jung Hoon Yoo ◽  
Dae Hwang Yoo ◽  
Jung Hwa Seo ◽  
Ji Ling Dong ◽  
Young Sang Na ◽  
...  

In Zr-Cu-Ni-Al bulk metallic glasses where there are no dislocations, localized plastic deformation in shear bands occurs largely by the formation and migration of defects such as voids, micropores, shear bands and local variations in composition. Thus, the investigation on defects is critical for the understanding and improvement of plastic deformation in metallic glasses. In this study, microstructures and nano defects in the Zr-Cu-Ni-Al BMGs are characterized by variety of techniques, such as X-ray diffractometry, high resolution transmission electron microscopy, scanning transmission electron microscopy and electron holography.


2020 ◽  
Vol 75 (11) ◽  
pp. 913-919
Author(s):  
Frank Krumeich

AbstractSince the 1970s, high-resolution transmission electron microscopy (HRTEM) is well established as the most appropriate method to explore the structural complexity of niobium tungsten oxides. Today, scanning transmission electron microscopy (STEM) represents an important alternative for performing the structural characterization of such oxides. STEM images recorded with a high-angle annular dark field (HAADF) detector provide not only information about the cation positions but also about the distribution of niobium and tungsten as the intensity is directly correlated to the local scattering potential. The applicability of this method is demonstrated here for the characterization of the real structure of Nb7W10O47.5. This sample contains well-ordered domains of Nb8W9O47 and Nb4W7O31 besides little ordered areas according to HRTEM results. Structural models for Nb4W7O31 and twinning occurring in this phase have been derived from the interpretation of HAADF-STEM images. A remarkable grain boundary between well-ordered domains of Nb4W7O31 and Nb8W9O47 has been found that contains one-dimensionally periodic features. Furthermore, short-range order observed in less ordered areas could be attributed to an intimate intergrowth of small sections of different tetragonal tungsten bronze (TTB) based structures.


Sign in / Sign up

Export Citation Format

Share Document