Recruitment and Retention of Lower Division Metallurgy/Materials Students

1985 ◽  
Vol 66 ◽  
Author(s):  
Ray W. Guard ◽  
S. W. Stafford

ABSTRACTOpportunities in the materials science and engineering field appear quite plentiful into the next century. An increasing number of materials engineers will be needed by industry to develop new materials as well as adapt current ones to new needs. Is there a shortage of metallurgical/materials engineers? Academic institutions with existing or developing programs in materials may affect significant increases in enrollment by “marketing” materials high technology. The Department of Metallurgical Engineering at The University of Texas at El Paso has made exceptional progress in recruiting and retaining prospective engineering students into this technical area. What has been successful at UTEP may also benefit other academic programs.

MRS Bulletin ◽  
1990 ◽  
Vol 15 (8) ◽  
pp. 46-48
Author(s):  
D.L. Bourell ◽  
H.L. Marcus

The college-wide interdisciplinary graduate program approach to graduate education is a viable alternative to the departmental structure for areas of study that span two or more traditional disciplines. This article will explore the nature of this organizational style using materials science and engineering as the example discipline. We will discuss the advantages and disadvantages of the graduate program approach in the light of more than 18 years of experience at the University of Texas at Austin.The primary task of any center for higher learning is the education of students in an environment conducive to the open exchange and dissemination of ideas and knowledge. Traditionally, the university has approached this task by assembling scholars with common foundations of expertise into a collective group, the department. Besides the obvious function of providing a structured setting for the concentration of scholars with similar interests, the department also serves as the front line of faculty governance for matters including tenure, promotion, salary, resource management, and distribution. For example, course content and degree requirements are initiated at the department level. Thus the organizational structure of the college, and hence of the university, is firmly built on the traditional concept of department, a concept that has served education well.However, there are liabilities to the departmental structure since its natural tendency is to compartmentalize knowledge with the concomitant academic provincialism. This mindset poses a particularly serious problem for a number of subject areas that are intrinsically multidisciplinary. Several examples in the field of engineering science are biomedical engineering, manufacturing and industrial engineering, nuclear engineering, environmental engineering and also materials science and engineering.


2021 ◽  
Vol 1193 (1) ◽  
pp. 011001

As the Chairman of the 9th edition of the Manufacturing Engineering Society International Conference (MESIC 2021) held in Gijόn (Spain) from 23 to 25 of June 2021, I have the honour to present the papers discussed at the conference by researchers and professionals from 18 different countries. This ninth edition was organized by the Manufacturing Engineering Area of the University of Oviedo on behalf of the Manufacturing Engineering Society (SIF). The conference was first held in Calatayud (Spain) in 2005, with the main objective of becoming a forum for the exchange of experiences between national and international researchers and professionals in the field of Manufacturing Engineering. The rest of the editions have been celebrated up to now with this same vocation. IOP Conference Series: Materials Science and Engineering (MSE) publishes here the 140 papers, organised according to the topics of the Conference, that were finally accepted for presentation at the MESIC 2021 after a rigorous peer review process. List of Committees Organizing Committee, Scientific Committee, Editors, Organizer, Promoter and Sponsors and this titles are available in this pdf.


Impact ◽  
2020 ◽  
Vol 2020 (9) ◽  
pp. 80-82
Author(s):  
Shuichi Akasaka

Engineers and materials scientists are constantly working to improve the quality of our built environments and vehicles, including noise levels and vibration. The researchers pursuing the duel goals of safety and comfort are increasingly being challenged as the projects they work on advance technologically, in size and are constructed with new materials. Buildings grow taller and must compensate for greater movement and vibrations from wind or shifting foundations. Cars especially are undergoing drastic changes that require a rethinking of the material and designs of their frames, panels, doors and windows. The advent of electric motors for example, has reduced overall noise but shifted the frequency of sound higher, making them more uncomfortable. Assistant Professor Shuichi Akasaka, who is based in the Department of Materials Science and Engineering at Tokyo Institute of Technology in Japan, is carrying out research to design new materials that reduce vibration and noise, and create the quiet, safe automobiles and living spaces of the future.


2017 ◽  
pp. 1465-1483 ◽  
Author(s):  
D. Vergara ◽  
M. Lorenzo ◽  
M.P. Rubio

The use of virtual resources in university teaching is becoming a key issue, especially in engineering degrees where novel virtual environments are being developed. This chapter described a study on the opinions of engineering students with regard to the use of diverse virtual applications in subjects related to Materials Science and Engineering. From 2011 to 2014, engineering students of several universities and diverse nationalities were surveyed regarding their views on using virtual environments in learning. The results presented in this chapter showed that students gave great importance to the use of virtual resources in university teaching but, at the same time, they also considered the presence of the teacher in the classroom to be very essential. The findings also provided the timetable distribution of topics that, according to the students' opinion, should be considered in the subjects of Materials Science, such as master classes, problem solving classes, practical classes in both real and virtual laboratories.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (9) ◽  
pp. 32-35
Author(s):  
John R. Ambrose

Those in charge of creating and endorsing curricula for engineering colleges appear to generally agree that materials science should be included. More than jus an acceptance of ABET (Accreditation Board for Engineering and Technology) certification requirements, the consensus view is that engineers really need to know about the materials they will someday use Unfortunately, there appears to be some disagreement about where this exposure to materials science fits into the overal scheme of things (scheduling or course sequence, so to speak). There is also dis agreement as to what engineering students should know about materials and by inference, as to who is most knowledge able and best qualified to teach this information. As a result of these disagreements students at some engineering departments have had to take, during the final semester, an introductory materials course taugh by instructors whose professional experience lies outside materials science and engineering.


Author(s):  
Marjorie Senechal

AbstractAs crystallography merges with materials science and engineering, mathematical crystallography is growing in new directions, including: Characterizing new materials with unusual properties; Imaging, including but not limited to diffraction; Exploring and exploiting superspaces; Mapping the aperiodic landscape, from chaos to classical periodicity and beyond; Re-modeling the structures of real crystals, both periodic and aperiodic; Modeling self-assembly and self-reorganization on the nanoscale. In short, it’s not (just) about space groups and tilings anymore.


2001 ◽  
Vol 684 ◽  
Author(s):  
Katherine C. Chen ◽  
Paul T. Adalian

ABSTRACTEnabling students to become independent learners is a desirable goal for many educators. However, the task is not always easily addressed with the long lists of concrete, technical objectives that must usually be covered in classes. As a result, information often follows a oneway path from the instructor to the student, and students can develop a reliance on “packaged” knowledge and answers from only teachers and textbooks. In efforts to engage students in the learning process and to encourage the self-directed exploration of knowledge, “information competence” [1] has been incorporated into an upper-level materials course. Using current topics in materials science and engineering, students formulate questions to address specific issues and then locate pertinent information. A variety of resources, such as newspapers, web sites, and scholarly journals, are explored and evaluated. The instructor acts as a facilitator that assists with search strategies and evaluation of the information. Students develop the ability to process and reorganize the information into useful forms (e.g., reports, oral presentations). Providing the tools and instructions to function effectively in this Information Age will hopefully promote lifelong learning in today's students.


2002 ◽  
Vol 760 ◽  
Author(s):  
Antonia Moropoulou ◽  
Eleni Aggelakopoulou ◽  
Nicolas P. Avdelidis ◽  
Maria Koui

ABSTRACTIn this paper, the example of the Materials Science and Engineering (MSE) Curriculum that exists as a scientific direction in the undergraduate programme of the Chemical Engineering School, in the National Technical University of Athens (NTUA), in Greece, is presented. The course content includes several tools, such as theoretical lessons, laboratory modules - nondestructive testing (NDT) and instrumental techniques - semi industrial scale devices, fieldworks and a dissertation thesis. The presented curriculum can be regarded as an innovative educational model for chemical engineering students that choose to become involved in the field of MSE.


Sign in / Sign up

Export Citation Format

Share Document