Small Angle Scattering and the Structure and Dynamics of Filled and Unfilled Rubbers

2000 ◽  
Vol 661 ◽  
Author(s):  
Erik Geissler ◽  
Anne-Marie Hecht ◽  
Cyrille Rochas ◽  
Ferenc Horkay ◽  
Françoise Bley ◽  
...  

ABSTRACTRandom cross-linking in rubbers produces local variations in the elasticity of the network. These variations, whose characteristic size lies in the range 1-100 nm, are revealed when the rubber is swollen in a low molecular weight solvent, owing to the competition between the osmotic pressure of the solvent and the local elastic constraints, which affects the local polymer concentration. Such concentration fluctuations can be measured by small angle X-ray or neutron scattering (SAXS or SANS) as well as by dynamic light scattering.In filled elastomers, the filler modifies the distribution of the polymer and of the elastic constraints. Swelling these systems in a solvent in which the deuteron/proton ratio can be varied permits the different components in the scattering function of the polymer and of the filler to be separated. Observations on silica particles in a poly(dimethyl siloxane) (PDMS) rubber yield measurements not only of the surface area of the particles but also of the fraction of the surface area occupied by the polymer. Analysis of the dynamic light scattering response of these systems gives confirmation of the validity of the procedure.Coherent X-ray scattering measurements, combined with dynamic light scattering measurements of the filled uncross-linked polymer melts in the absence of solvent reveal that the structural relaxation process that follows an external mechanical perturbation is a diffusioncontrolled process.

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2442 ◽  
Author(s):  
Hui Liu ◽  
Jianfeng Wang ◽  
Jiachen Wang ◽  
Suping Cui

In this study, Multiwalled carbon nanotubes (MWCNTs) were oxidized by a mixture of sulfuric acid and nitric acid (V:V = 3:1) at 70 °C for 1, 2, and 4 h, respectively. The oxidized MWCNTs were characterized by N2 adsorption, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), and Raman spectroscopy to determine the oxidation degree. The dispersion of the MWCNTs was investigated by UV-vis-NIR, SEM, and dynamic light scattering measurements. Results show that sulfonitric treatment increased the surface area and total pore volume and reduced the average pore diameter of MWCNTs. The treatment promoted the formation of oxidized species on the surface MWCNTs, as identified by FT-IR, TGA, and X-ray photoelectron spectroscopy measurements, and more oxygen-containing functional groups were generated when treatment time was extended. Moreover, a general relationship between oxidation degree and dispersibility of MWCNTs in water was established. UV-vis-NIR and dynamic light scattering measurements and SEM images revealed that MWCNTs with higher oxidation degree showed better dispersibility in water.


2013 ◽  
Vol 111 ◽  
pp. 561-570 ◽  
Author(s):  
José Wilson P. Carvalho ◽  
Fernanda Rosa Alves ◽  
Tatiana Batista ◽  
Francisco Adriano O. Carvalho ◽  
Patrícia S. Santiago ◽  
...  

Author(s):  
Mohamed Dahani ◽  
Laurie-Anne Barret ◽  
Simon Raynal ◽  
Colette Jungas ◽  
Pétra Pernot ◽  
...  

The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar interactions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization.


Polymer ◽  
2010 ◽  
Vol 51 (1) ◽  
pp. 122-128 ◽  
Author(s):  
Sergey G. Starodubtsev ◽  
Tatyana V. Laptinskaya ◽  
Alena S. Yesakova ◽  
Alexei R. Khokhlov ◽  
Eleonora V. Shtykova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document