Materials Science and Engineering at Boise State University: Responding to an Industrial Need

2001 ◽  
Vol 684 ◽  
Author(s):  
Amy J. Moll ◽  
William B. Knowlton ◽  
David E. Bunnell ◽  
Susan L. Burkett

ABSTRACTThe College of Engineering at Boise State University (BSU) is a new program in only its fifth year of existence. Bachelor's degrees in Civil Engineering (CE), Electrical and Computer Engineering (ECE) and Mechanical Engineering (ME) are offered with M.S. Degrees in each discipline added this year. The industrial advisory board for the College of Engineering at BSU strongly recommended enhancement of the Materials Science and Engineering (MS&E) offerings at BSU. In response to local industry's desire for an increased level of coursework and research in MS&E, BSU has created a minor in MS&E at both the undergraduate and graduate level.The MS&E program is designed to meet the following objectives: provide for local industry's need for engineers with a MS&E competency, add depth of understanding of MS&E for undergraduate and graduate students in ECE, ME and CE, prepare undergraduate students for graduate school in MS&E, improve the professional skills of the students especially in the areas of materials processing and materials selection, provide applied coursework for Chemistry, Physics, and Geophysics students, and offer coursework in a format that is convenient for students currently working in local industry.

Author(s):  
Kenneth L. Roberts

Modern industrial processes are presently adapting to the use of multiscale production techniques where consumer products can be made at the mesoscale and also approaching atomic, or the nanoscale level. Coupled with the fact that classical Science, Technology, Engineering and Mathematics (STEM) education typically does not address nanoscale science and engineering topics in most technical courses, this condition could potentially leave countless STEM students around the world relatively unprepared for the 21st century marketplace. This chapter focused on the development of the nanostructured materials science and engineering discipline from the most recent research and development topics to the integration of this information internationally into the technical classroom. The chapter presented future work on the adaption of the previous research and educational work on this topic at the College of Engineering at King Faisal University in Saudi Arabia and suggestions were offered for successful new nanoscale science and engineering course development.


2017 ◽  
pp. 1075-1093
Author(s):  
Kenneth L. Roberts

Modern industrial processes are presently adapting to the use of multiscale production techniques where consumer products can be made at the mesoscale and also approaching atomic, or the nanoscale level. Coupled with the fact that classical Science, Technology, Engineering and Mathematics (STEM) education typically does not address nanoscale science and engineering topics in most technical courses, this condition could potentially leave countless STEM students around the world relatively unprepared for the 21st century marketplace. This chapter focused on the development of the nanostructured materials science and engineering discipline from the most recent research and development topics to the integration of this information internationally into the technical classroom. The chapter presented future work on the adaption of the previous research and educational work on this topic at the College of Engineering at King Faisal University in Saudi Arabia and suggestions were offered for successful new nanoscale science and engineering course development.


2005 ◽  
Vol 11 (I1) ◽  
pp. 1-1

The official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada / Société de, Microscopie du Canada, Mexican Microscopy Society, Brazilian Society for Microscopy and Microanalysis, Venezuelan Society of Electron Microscopy, European Microbeam Analysis Society, Australian Microscopy and Microanalysis Society.Published in affiliation with Royal Microscopical Society, German Society for Electron Microscopy, Belgian Society for Microscopy, Microscopy Society of Southern Africa.Editor in Chief, Editor, Microanalysis: Charles E. Lyman, Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, Phone: (610) 758-4249, Fax: (610) 758-4244, e-mail: [email protected], Biological Applications: Ralph Albrecht, Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706-1581, Phone: (608) 263-3952, Fax: (608) 262-5157, e-mail: [email protected], Materials Applications: David J. Smith, Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704, Phone: (480) 965-4540, Fax: (480) 965-9004, e-mail: [email protected], Materials Applications: Elizabeth Dickey, Materials Science and Engineering, Pennsylvania State University, 223 MRL Building, University Park, PA 16802-7003, Phone: (814) 865-9067, Fax: (814) 863-8561, e-mail: [email protected], Light and Scanning Probe, Microscopies: Brian Herman, Cellular and Structural Biology, University of Texas at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78284-7762, Phone: (210) 567-3800, Fax: (210) 567-3803, e-mail: [email protected], Biological Applications: Heide Schatten, Veterinary Pathobiology, University of Missouri-Columbia, 1600 E. Rollins Street, Columbia, Missouri 65211-5030, Phone: (573) 882-2396, Fax: (573) 884-5414, e-mail: [email protected] Editor, Book Review Editor: JoAn Hudson, Advanced Materials Research Labs., Clemson Univ. Research Park, Rm. 105, Anderson, SC 29625, Phone: (864) 656-7535, Fax: (864) 656-2466, e-mail: [email protected] Section Editor: James N. Turner, Phone: (518) 474-2811, Fax: (518) 474-8590, e-mail: [email protected] Editor: William T. Gunning III, Phone: (419) 383-5256, Fax: (419) 383-3066, e-mail: [email protected] Editor: Stuart McKernan, Phone: (612) 624-6009, Fax: (612) 625-5368, e-mail: [email protected].


MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1687-1692 ◽  
Author(s):  
Yakov E. Cherner ◽  
Maija M. Kuklja ◽  
Michael J. Cima ◽  
Alexander I. Rusakov ◽  
Alexander S. Sigov ◽  
...  

ABSTRACTA virtual X-Ray Laboratory for Materials Science and Engineering has been developed and used as a flexible and powerful tool to help undergraduate and graduate students become familiar with the design and operation of the X-ray equipment in visual and interactive ways in order to learn fundamental principles underlying X-ray analytical methods. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in physical X-ray labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Students have also used the virtual diffractometer linked and synchronized with an actual powder diffractometer for blended experimentation. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of students’ performance and designed new virtual experiments and more personalized learning assignments for students. The lab has also been integrated with the MITx course available on the massive open online course edX platform for Massachusetts Institute of Technology for undergraduate students.


2007 ◽  
Vol 1046 ◽  
Author(s):  
Christine Caragianis-Broadbridge ◽  
Heather Edgecumbe ◽  
Greg Osenko ◽  
Ann Lehman ◽  
Lisa Alter ◽  
...  

AbstractThe intent of the CRISP education and outreach effort is to use materials science as a vehicle for enhancing the scientific literacy and knowledge of kindergarten through post-graduate level students. A challenging part of our mission has been inspiring students to take the next step and consider further study (or a career) in the field of Materials Science and Engineering (MSE). The CRISP educational programs were developed through a partnership between Yale University, Southern Connecticut State University and the urban school district of New Haven, CT. An overview of the methods and results of both formal and informal educational program components will be presented for years one and two of the CRISP MRSEC. This paper will focus on two CRISP programs: 1) MRSEC Initiative for Multidisciplinary Education & Research (MIMER) and 2) “Exploring Materials Science” mobile kits. The evaluation data indicates that the approach used in developing these educational programs is important. Specifically, the impact of these programs is influenced by the students' ability to relate the acquired knowledge to real life applications and technologies. In particular, emphasizing career opportunities rather than just presenting content-based programs is a key element to increasing interest towards further study in Materials Science and Engineering.


2002 ◽  
Vol 760 ◽  
Author(s):  
P. K. Gupta ◽  
P. M. Anderson ◽  
R. G. Buchheit ◽  
S. A. Dregia ◽  
J. J. Lannutti ◽  
...  

ABSTRACTA new Materials Science and Engineering (MSE) curriculum is in effect at the Ohio State University starting fall, 2002. This curriculum is composed of four parts:1) General Education Core (required by the University of all undergraduates).2) Engineering Core (required by the College of Engineering). This includes courses in English, Math, Physics, Chemistry, Statistics, Programming, Statics, and Stress Analysis.3) Materials Science and Engineering Core (required by the MSE Department). It includes courses on Atomic Scale Structure, Microstructure and Characterization, Mechanical Behavior, Electrical Properties, Thermodynamics, Transport and Kinetics, Phase Diagrams, Phase Transformations, Modeling of Material Processes, Materials Selection, and Materials Performance).4) MSE-Specialization in the senior year (required by the MSE Department). Novel features of the new curriculum include:1) concentration in a specialized area of MSE in the senior year.2) increased exposure to MSE courses in the second year.3) increased industrial exposure.4) redesigned laboratory courses.


Sign in / Sign up

Export Citation Format

Share Document