Pulsed Laser Deposition of Y1Ba2Cu3O7-δ?Thin Films in High Oxygen Partial Pressures

2001 ◽  
Vol 689 ◽  
Author(s):  
Timothy J. Haugan ◽  
Paul N. Barnes ◽  
Rama M. Nekkanti ◽  
Iman Maartense ◽  
Lyle B. Brunke ◽  
...  

ABSTRACTPulsed laser deposition of Yba2Cu3O7-δ?(YBCO) coated conductors was studied for the range of P(O2) from 120 mTorr to 1200 mTorr, higher than typically used oxygen partial pressures during deposition. The purpose of the investigation was to determine the sensitivity of YBCO film quality to varying P(O2) for scaled-up fabrication of long-length coated conductors. Deposition at high P(O2) (≥?400 mTorr) gave very high and more consistent critical temperatures (Tc ≈?92 ±?0.4 °K) than results obtained at lower oxygen partial pressures (≤?200 mTorr) as determined by magnetic susceptibility measurements. Typically, the lower partial pressures are used although the laser fluence used in this research (3.2 J/cm2) is higher than typical. Transport Jc's were consistantly high for a wide range of oxygen pressures, 5–8 ×?106 A/cm2 at 77 K, self-field for P(O2) = 200–1200 mTorr. These results indicate that pulsed laser deposition of YBCO is relatively insensitive to P(O2) at the higher pressures of oxygen considered.

2000 ◽  
Vol 15 (12) ◽  
pp. 2647-2652 ◽  
Author(s):  
M. Paranthaman ◽  
C. Park ◽  
X. Cui ◽  
A. Goyal ◽  
D. F. Lee ◽  
...  

Short segments of YBa2Cu3O7-y (YBCO) coated conductors were fabricated on rolling-assisted biaxially textured substrates (RABiTS) with a layer sequence of CeO2/YSZ/Ni using an ex situ BaF2 precursor process. Pulsed laser deposition (PLD) was used to deposit both YSZ and CeO2 layers. The YBCO films were grown using e-beam coevaporated Y–BaF2–Cu precursors followed by postannealing. An overall engineering current density, JE, of 28,000 A/cm2 and critical current, Ic, of 147 A/cm width at 77 K were achieved for a 1.6-μm-thick YBCO film. This result demonstrates the possibility of using both the ex situ BaF2 precursor approach and the RABiTS process for producing long lengths of high-JE coated conductors.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (8) ◽  
pp. 583-589 ◽  
Author(s):  
Alexander Usoskin ◽  
Herbert C. Freyhardt

AbstractHigh-temperature superconductors of the second generation—coated conductors—are based on an architecture of YBCO films deposited on a well-textured substrate tape. The deposition technique used in the processing of YBCO films is responsible not only for both the resulting critical currents in the conductors and the cost efficiency of the employed production route, but also for the ultimate viability of the chosen technology. This article describes an advanced deposition method for YBCO films using high-rate pulsed laser deposition (HR-PLD).An elaborate variable azimuth ablation allows target roughening to be considerably reduced in the course of continuous deposition, and as a result, the integral deposition speed and speed stability can be increased to technologically interesting high values.Well-selected process parameters have been demonstrated to yield high currents of up to 480A/cm-width in short tapes and 360A/cm-width in 6-m-long tapes.Together with quasi-equilibrium heating, the HR-PLD method allows the processing of long-length YBCO-coated conductors and offers a cost-efficient route for their production on an industrial scale.


2000 ◽  
Vol 341-348 ◽  
pp. 2305-2308 ◽  
Author(s):  
S.R. Foltyn ◽  
P.N. Arendt ◽  
R.F. DePaula ◽  
P.C. Dowden ◽  
J.Y. Coulter ◽  
...  

2000 ◽  
Vol 15 (10) ◽  
pp. 2249-2265 ◽  
Author(s):  
Jeanne M. McGraw ◽  
John D. Perkins ◽  
Falah Hasoon ◽  
Philip A. Parilla ◽  
Chollada Warmsingh ◽  
...  

We have found that by varying only the substrate temperature and oxygen pressure five different crystallographic orientations of V2O5 thin films can be grown, ranging from amorphous to highly textured crystalline. Dense, phase-pure V2O5 thin films were grown on SnO2/glass substrates and amorphous quartz substrates by pulsed laser deposition over a wide range of temperatures and oxygen pressures. The films' microstructure, crystallinity, and texturing were characterized by electron microscopy, x-ray diffraction, and Raman spectroscopy. Temperature and oxygen pressure appeared to play more significant roles in the resulting crystallographic texture than did the choice of substrate. A growth map summarizes the results and delineates the temperature and O2 pressure window for growing dense, uniform, phase-pure V2O5 films.


2019 ◽  
Vol 196 ◽  
pp. 00008
Author(s):  
Sergey V. Starinskiy ◽  
Alexey A. Rodionov ◽  
Yuri G. Shukhov ◽  
Alexander V. Bulgakov

We have analysed changes in the oxidation state of SiOx films produced by pulsed laser deposition in a background gas with different partial pressures of oxygen. The optical properties of the films in IR range are shown to be close to those of SiO2 while the total oxidation degree is considerably less than 2. It is suggested that the film consists of oxidized and unoxidized regions due to preferential oxidation of the periphery of the silicon ablation plume during expansion. These regions are overlapping in the film if the laser beam is scanned on the target.


2006 ◽  
Vol 980 ◽  
Author(s):  
Noha Farghal ◽  
Moustafa Yehia Ghannam ◽  
Amr M. Shaarawi ◽  
Hussein El Samman ◽  
Philippe Soussan ◽  
...  

AbstractIn this work, the material properties of AuNi5 films prepared by Pulsed Laser Deposition (PLD) to be used as contact materials in RF MEMS switches are investigated. PLD is used because it provides good wide range thickness control (few nanometers to tens of microns) while preserving ablation target stoichiometry. Films with thickness in the range 50 - 450 nm were deposited at Laser energy density (fluence) in the range 0.55 - 1.38 J.cm-2 on silicon substrates at room temperature. An aperture was placed between the plume and the substrate to filter out large particulates. The presence of the aperture reduced surface roughness from 8.5 nm to 4.3 nm as determined by optical profilometry. In addition, the presence of the aperture during deposition has been found to affect film stoichiometry. The latter was evaluated using X-ray Fluorescence and the Nickel content has been found to vary in the range 1.1 - 9.5%. Only films deposited with the aperture removed maintain target stoichiometry (5.2% Ni). Hence, it is believed that the presence of the aperture causes non-congruent transfer. The Nickel content within the range under investigation has practically no effect on film morphology or hardness. Laser fluence, however, has been found to be the dominant factor determining film properties. Finally, 100 µm wide AuNi5 strips 290 nm and 130 nm thick deposited at room temperature have been successfully formed on silicon wafers by lift-off photolithography.


Sign in / Sign up

Export Citation Format

Share Document