Size and Composition Effects in the Structure and Properties of Polymer-Protected Bimetallic Particles

2001 ◽  
Vol 704 ◽  
Author(s):  
Marie-José Casanove ◽  
Pierre Lecante ◽  
Marie-Claire Fromen ◽  
Marc Respaud ◽  
David Zitoun ◽  
...  

AbstractWe investigate the structural evolution of PtRu and CoRh ultra fine bimetallic particles as a function of their composition in the whole range of stoichiometry. Isolated particles embedded in an organic matrix are synthesized using chemical techniques in mild conditions. Their size, dispersion and structure are analyzed by HRTEM, WAXS and EXAFS techniques. The magnetic behavior of cobalt-based alloys is investigated by SQUID magnetometry. In the PtRu alloys, we demonstrate the role of composition in the structural transition from the face-centered cubic to the hexagonal close packed structure in nanoparticles and detail the mechanism of the transition. We point out the effect of size reduction and core-shell atomic distribution in the structure and the enhanced magnetization in CoRh bimetallic particles.

2013 ◽  
Vol 06 (06) ◽  
pp. 1350056 ◽  
Author(s):  
BAI LIU ◽  
LIRUI LIU

Carbon nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Their interface significantly affects the properties of the composites. Here, we show that three kinds of interfaces between crystalline Ni and CNTs exist, namely, ordered, distorted, and disordered. They presented lattice states of Ni atoms near the interface, whereas the (111) Ni plane was parallel to the CNTs' surface and appeared apart in a smaller or bigger angle. The coherent face-centered cubic (f.c.c)/hexagonal close-packed structure (h.c.p) boundary was formed between the crystalline Ni and CNTs at the ordered interface, in which the match was (111) Ni //(0001) Carbon . We suggested a dislocation model for the coherent interface. The model explained why the angle between (200) Ni and the CNTs' inner surface was 52.9° rather than the theoretical value of 54.75°. The [Formula: see text] dislocation was formed to fit the coherent relationship. Thus, Ni lattice shrinkage occurred. Further study indicated that the formation mechanism of crystalline Ni in CNTs was through heterogeneous nucleation on the inner wall surface and growth of the crystal nucleus.


Crystals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Shoki Abe ◽  
Yuui Yokota ◽  
Takayuki Nihei ◽  
Masao Yoshino ◽  
Akihiro Yamaji ◽  
...  

Co-Cr-Mo alloy fibers of 2 mm in diameter were fabricated from the melt at 1, 2, and 5 mm/min growth rates by unidirectional solidification using an alloy-micro-pulling-down (A-µ-PD) method to control the microstructure. All elements, Co, Cr, and Mo, were distributed in stripes elongated along the growth direction due to constitutional undercooling. Both Co-Cr-Mo fibers fabricated at 2 and 5 mm/min growth rates were composed of the γ phase with a face-centered cubic structure (fcc-γ phase) and ε-phase with a hexagonal close-packed structure (hcp-ε phase), and the ratio of the fcc-γ phase in the fiber fabricated at 5 mm/min growth rate was higher than that in the fiber fabricated at 2 mm/min. The results suggest that a faster growth rate increases the ratio of the fcc-γ phase in the Co-Cr-Mo fiber fabricated by unidirectional solidification.


Author(s):  
F. Monchoux ◽  
A. Rocher ◽  
J.L. Martin

Interphase sliding is an important phenomenon of high temperature plasticity. In order to study the microstructural changes associated with it, as well as its influence on the strain rate dependence on stress and temperature, plane boundaries were obtained by welding together two polycrystals of Cu-Zn alloys having the face centered cubic and body centered cubic structures respectively following the procedure described in (1). These specimens were then deformed in shear along the interface on a creep machine (2) at the same temperature as that of the diffusion treatment so as to avoid any precipitation. The present paper reports observations by conventional and high voltage electron microscopy of the microstructure of both phases, in the vicinity of the phase boundary, after different creep tests corresponding to various deformation conditions.Foils were cut by spark machining out of the bulk samples, 0.2 mm thick. They were then electropolished down to 0.1 mm, after which a hole with thin edges was made in an area including the boundary


Sign in / Sign up

Export Citation Format

Share Document