close packed structure
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1753
Author(s):  
Jaroslav Čapek

There is currently an increasing demand for metals with a hexagonal close-packed structure (HCP) [...]


2021 ◽  
pp. 262-282
Author(s):  
David Rickard

The formation of framboids involves two distinct processes. First, pyrite microcrystals aggregate into spherical groups through surface free energy minimization. The self-assembly of framboid microcrystals to form framboids is consistent with estimations based on the classical Derjaguin-Landau-Verwey-Overbeek (DVLO) theory, which balances the attraction between particles due to the van der Waals forces against the interparticle electrostatic repulsive force. Second, the microcrystals rearrange themselves into ordered domains through entropy maximization. Icosahedral symmetry tends to minimize short-range attractive interactions and maximize entropy. The physical processes which facilitate this rearrangement are Brownian motion and surface interactions. Curved framboid interface enforce deviation from the cubic close packed structure. In the absence of a curved surface, weakly interacting colloidal particles preferentially self-assemble into a cubic close packed structure, and this is observed in irregular, non-framboidal aggregates of pyrite micro- and nanocrystals.


2021 ◽  
pp. 111280
Author(s):  
Yan Tian ◽  
Weixin Lou ◽  
Jingxin Ren ◽  
Jing Wang ◽  
Qiyuan Huang ◽  
...  

2021 ◽  
pp. 2130006
Author(s):  
Liming Lu ◽  
Guoqiang Jiang ◽  
Chunyan Gu ◽  
Jiangfeng Ni

Although oxide cathodes have been widely used in these Li-ion batteries, these cathodes suffer from instability of the oxygen close-packed structure. In contrast, polyanionic phosphates such as LiFePO4 have incredible lattice stability and safety features owing to the strong covalent bond of P-O, which constrains the oxygen atoms and minimizes the defects of the oxygen site, resulting in stable frameworks. In addition, the presence of the strong P-O covalent bond stabilizes the anti-bonding transitional metal redox couple through an M-O-P inductive effect to generate a relatively high potential. Hence, polyanionic LiFePO4 has been an ideal choice of cathode materials for batteries deployed in electric vehicles. In this review, we revisit the basic features and development of LiFePO4, as an attempt to speeding its future deployment in massive electric vehicles.


2021 ◽  
Vol 7 (13) ◽  
pp. eabd6647
Author(s):  
Zhicheng Zhang ◽  
Guigao Liu ◽  
Xiaoya Cui ◽  
Yue Gong ◽  
Ding Yi ◽  
...  

Metallic nanostructures are commonly densely packed into a few packing variants with slightly different atomic packing factors. The structural aspects and physicochemical properties related with the vacancies in such nanostructures are rarely explored because of lack of an effective way to control the introduction of vacancy sites. Highly voided metallic nanostructures with ordered vacancies are however energetically high lying and very difficult to synthesize. Here, we report a chemical method for synthesis of hierarchical Rh nanostructures (Rh NSs) composed of ultrathin nanosheets, composed of hexagonal close-packed structure embedded with nanodomains that adopt a vacated Barlow packing with ordered vacancies. The obtained Rh NSs exhibit remarkably enhanced electrocatalytic activity and stability toward the hydrogen evolution reaction (HER) in alkaline media. Theoretical calculations reveal that the exceptional electrocatalytic performance of Rh NSs originates from their unique vacancy structures, which facilitate the adsorption and dissociation of H2O in the HER.


2020 ◽  
Vol 10 (22) ◽  
pp. 7962
Author(s):  
Daehwan Kim ◽  
Taekyung Lee ◽  
Chong Soo Lee

Plastic anisotropy is an important issue for metals possessing a hexagonal close-packed structure. This study investigated the anisotropic deformation characteristics of commercially pure titanium with basal texture. A quasi-static uniaxial compression gave rise to clear differences in flow curves and strain-hardening rates depending on the loading direction. This study employed a constitutive approach to quantify the contribution of (i) dynamic Hall–Petch strengthening, (ii) dislocation pile-up, and (iii) texture hardening with respect to the total flow stress. Such an approach calculated a flow stress comparable to the measured value, providing logical validity. The microstructural and mechanical differences depending on the loading direction (i.e., anisotropy) were successfully interpreted based on this approach.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3899
Author(s):  
Lidia Zajączkowska ◽  
Dariusz Siemiaszko ◽  
Małgorzata Norek

In this work, aluminum (Al) anodization in malic acid electrolytes of different concentrations (0.15 M, 0.25 M, and 0.5 M) was studied. The close-packed hexagonal pore structure was obtained for the first time in this organic acid in a 0.5 M solution, at 250 V and temperature of 5 °C. Moreover, the process was investigated as a function of the number of cycles carried out in the same electrolyte. A repetition of anodization under seemingly the same external electrochemical parameters (applied voltage, temperature, etc.) induced serious changes in the electrolyte. The changes were reflected in the current density vs. time curves and were most evident in the higher concentrated electrolytes. This phenomenon was tentatively explained by a massive incorporation of malate anions into anodic alumina (AAO) framework. The impoverishment of the electrolyte of the malate anions changed internal electrochemical conditions making easier the attraction of the anions to the Al anode and thus the AAO formation. The electrolyte modification was advantageous in terms of pore organization: In a 0.25 M solution, already after the second anodization, the pore arrangement transformed from irregular towards regular, hexagonal close-packed structure. To the best of our knowledge, this is the first observation of this kind.


Sign in / Sign up

Export Citation Format

Share Document