ε phase
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 31)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
V. A. Teldekov ◽  
L. M. Gurevich

The study of changes in the microstructure, thickness of the ε-phase and the hardness of diffusion coatings obtained by varying the temperature in the process of low-temperature nitrocarburizing was carried out. Studies have shown the possibility, through the use of low-temperature nitrocarburizing technology, to reduce the labor intensity of technological operations, shorten the processing time and reduce energy consumption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Črtomir Donik ◽  
Jakob Kraner ◽  
Aleksandra Kocijan ◽  
Irena Paulin ◽  
Matjaž Godec

AbstractThe key feature of Fe–Mn alloys is gradual degradability and non-magneticity, with laser power bed fusion (LPBF) parameters influencing the microstructure and chemical composition. Our study focuses on biodegradable Fe–Mn alloys produced by mechanically mixing pure metal feedstock powders as part of the LPBF process. The Mn content and, consequently, the γ-ε phase formation in LPBF samples are directly correlated with an adapted energy–density (E) equation by combining the five primary LPBF parameters. We varied laser power (P) in a range of 200–350 W and scanning speed at 400 and 800 mm/s, and a comprehensive study was performed on samples with similar E. The study also showed an almost linear correlation between the LPBF's laser power and the material's hardness and porosity. The corrosion resistance was significantly reduced (from 13 to 400 μm/year) for the LPBF samples compared to a conventionally produced sample due to the dual-phase microstructure, increased porosity and other defects. The static immersion test showed that the process parameters greatly influence the quantity of oxides and the distribution of their diameters in the LPBF samples and, therefore, their corrosion stability. The most challenging part of the study was reducing the amount of ε phase relative to γ phase to increase the non-magnetic properties of the LPBF samples.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hyeon-Tae Im ◽  
Hyun-Su Kang ◽  
Hyeon-Goo Kang ◽  
Hyo Kyu Kim ◽  
Jun Choi ◽  
...  

Purpose The purpose of this paper is to examine the effect of internal pores on the tensile properties of a Co–Cr–Mo alloy fabricated by selective laser melting (SLM). Design/methodology/approach The size and volume fraction of pores were controlled through high temperature annealing (HTA) and hot isostatic pressing (HIP). Findings After HTA, the size and fraction of pores decreased compared with the as-built SLM sample, and no pores were observed after HIP. Tensile tests of the HTA and HIP samples showed nearly similar tensile deformation behavior. From the results, the authors found that the size of the internal pores formed in the SLM process had little effect on the tensile properties. The as-built SLM sample had less elongation than the HTA and HIP samples, which would not the effect of porosity, but rather the effect of the residual stress and the retained ε phase after the SLM process. Originality/value Although pores are a main factor that influence the mechanical properties, the effect of pores on the tensile properties of Co–Cr–Mo alloys fabricated by SLM has not been studied. Therefore, in this study, the effect of pores on the tensile properties of a Co–Cr–Mo alloy fabricated by SLM was studied.


2021 ◽  
Vol 21 (7) ◽  
pp. 3950-3954
Author(s):  
Bong Ki Min ◽  
Tae-Yub Kwon ◽  
Min-Ho Hong

In the context of biology and medicine, nanotechnology encompasses the materials, devices, and systems whose structure and function are relevant for small length scales, from nanometers through microns. The purpose of this study was to compare the microstructures and resultant biocompatibility of three commercially available soft milled cobalt–chromium (Co–Cr) alloys (Ceramill Sintron, CS; Sintermetall, SML; and Soft Metal, SM). Disc-shaped specimens were prepared by milling the soft blanks and subsequent post-sintering. The crystal and microstructures of the three different alloys were studied using optical microscopy, X-ray diffractometry (XRD), energy dispersive X-ray spectroscopy, and electron backscatter diffraction. The amounts of Co, Cr, and molybdenum (Mo) ions released from the alloys were evaluated using inductively coupled plasma-mass spectroscopy. The effect of ion release on the viability of L929 mouse fibroblasts was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The SML alloy showed a finer grain size (approx. 5 μm) and a larger pore size (approx. 5 μm) than the CS and SM alloys, and its XRD pattern exhibited a slightly higher ε phase peak intensity than that of the γ phase. In the CS and SML alloys, the average crystallite sizes of the nano-sized Cr23C6 carbide were 21.6 and 19.3 nm, respectively. The SML alloy showed higher concentrations of Cr and Mo in the grain boundaries than the other two alloys. The SML alloy showed significantly higher Co and Mo ion releases (p < 0.001) and significantly lower cell viability (p < 0.05) than the CS and SM alloys. The combined results of this in vitro study suggest that the three soft milled Co–Cr alloys had different crystal and microstructures and, as a result, different levels of in vitro biocompatibility.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 710
Author(s):  
Natalia Narkevich ◽  
Yevgeny Deryugin ◽  
Yury Mironov

The deformation behavior, mechanical properties, and microstructure of Fe-Cr-Mn-0.53%N austenitic stainless steel were studied at a temperature range of 77 up to 293 K. The dynamics of the steel elongation were non-monotonic with a maximum at 240–273 K, when peaks of both static atom displacements from their equilibrium positions in austenite and residual stresses in the tensile load direction were observed. The results of X-ray diffraction analysis confirmed that the only stress-induced γ→ε-martensite transformation occurred upon deformation (no traces of the γ→α′ one was found). In this case, the volume fraction of ε-martensite was about 2–3%. These transformation-induced plasticity (TRIP) patterns were discussed in terms of changes in the phase composition of steel as the root cause.


2021 ◽  
Vol 5 (2) ◽  
pp. 19
Author(s):  
Nobumitsu Shohoji ◽  
Fernando Almeida Costa Oliveira ◽  
José Galindo ◽  
José Rodríguez ◽  
Inmaculada Cañadas ◽  
...  

Using a high-flux solar furnace, loosely compacted powders of Va-group transition metal (V, Nb, and Ta) were reacted with stream of NH3 gas (uncracked NH3 gas) being heated by concentrated solar beam to a temperature (T) range between 600 and 1000 °C. From V, sub-nitride V2N (γ phase) and hypo-stoichiometric mono-nitride VN possessing fcc (face-centered cubic) crystal lattice structure (δ phase) were synthesized. On the other hand, in the reaction product from Nb and Ta, hexagonal mono-nitride phase with N/M atom ratio close to 1 (ε phase) was detected. The reaction duration was normalized to be 60 min. In a conventional industrial or laboratory electric furnace, the synthesis of mono-nitride phase with high degree of crystallinity that yield sharp XRD peaks for Va-group metal might take a quite long duration even at T exceeding 1000 °C. In contrast, mono–nitride phase MN of Va-group metal was synthesized for a relatively short duration of 60 min at T lower than 1000 °C being co-existed with lower nitride phases.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 424
Author(s):  
Brian Chandler ◽  
Michelle Devoe ◽  
Martin Kunz ◽  
Hans-Rudolf Wenk

The introduction of multigrain crystallography (MGC) applied in a laser-heated diamond anvil cell (LH-DAC) using synchrotron X-rays has provided a new path to investigate the microstructural evolution of materials at extreme conditions, allowing for simultaneous investigations of phase identification, strain state determination, and orientation relations across phase transitions in a single experiment. Here, we applied this method to a sample of San Carlos olivine beginning at ambient conditions and through the α-olivine → γ-ringwoodite phase transition. At ambient temperatures, by measuring the evolution of individual Bragg reflections, olivine shows profuse angular streaking consistent with the onset of yielding at a measured stress of ~1.5 GPa, considerably lower than previously reported, which may have implications for mantle evolution. Furthermore, γ-ringwoodite phase was found to nucleate as micron to sub-micron grains imbedded with small amounts of a secondary phase at 15 GPa and 1000 °C. Using MGC, we were able to extract and refine individual crystallites of the secondary unknown phase where it was found to have a structure consistent with the ε-phase previously described in chondritic meteorites.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 896
Author(s):  
Alina Daniela Crisan ◽  
Aurel Leca ◽  
Cristina Bartha ◽  
Ioan Dan ◽  
Ovidiu Crisan

Melt spun ribbons of Mn53Al45C2 and Mn52Al46C2 have been synthesized by rapid quenching of the melt with the purpose of monitoring the ε-τ phase transformation to show technologically feasible ways to increase magnetic parameters and to illustrate the viability of these alloys as the next generation of rare earth (RE)-free magnets. By differential scanning calorimetry (DSC), activation energies and temperatures of onset of the ε-τ phase transformation were obtained. Structural analysis was performed using X-ray diffraction (XRD) and the resulting XRD patterns were quantitatively assessed using full profile Rietveld-type analysis. Appropriate annealing was performed in order to enable the ε-τ phase transformation. While hcp ε-phase was found to be predominant in the as-cast samples, after appropriate annealing, the tetragonal τ-phase, the one that furnishes the relevant magnetic response, was found to be predominant with an abundance of about 90%. The data suggested a mechanism of hcp ε-phase decomposition controlled by the segregation towards the interfacial regions, having the rate of transformation governed by antiphase boundary diffusion processes. Magnetic measurements of annealed sample Mn53Al45C2, consisting of predominant tetragonal τ-phase, showed high values of magnetization and increased coercivity, consistent with an energy product of about 10 MGOe, similar with previously reported magnetization measurements, providing further insight into the realization of future class of RE-free low-cost permanent magnets.


Author(s):  
Carlos Ferreira-Palma ◽  
Héctor J. Dorantes-Rosales ◽  
Víctor M. López-Hirata ◽  
Alberto A. Torres-Castillo

Abstract The relationship between microstructure and mechanical properties is studied for eutectoid Zn-22Al (wt.%) alloys modified with Cu and Ag. Three alloys with a Cu content of 2 wt.% and varying amounts of Ag were cast and hot-extruded. Different microstructural characteristics were induced by heat treatments: natural aging, artificial aging and furnace cooling. Structural and microstructural characterizations were carried out with X-ray diffraction and scanning electron microscopy. Mechanical properties were determined by tensile testing. Dilatometry was used for determining the effects of composition on the transformation points. The addition of Ag increased the ε phase fraction and provided solid solution strengthening, improving the mechanical strength and reducing ductility. Ag additions also displaced the eutectoid reaction to higher temperatures. The microstructure of the matrix has proven to have a strong impact on mechanical properties. The naturally aged specimens presented the highest ductility and tensile strength; however, these properties are severely affected by aging. Lamellar microstructures present the lowest ductility and values of tensile strength between those of the natural and artificially-aged specimens.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 183
Author(s):  
Ewa A. Ekiert ◽  
Bartłomiej Wilk ◽  
Zofia Lendzion-Bieluń ◽  
Rafał Pelka ◽  
Walerian Arabczyk

Nitriding of nanocrystalline iron and reduction of nanocrystalline iron nitride with gaseous mixtures of hydrogen with ammonia were studied at 375 °C and atmospheric pressure using the chemical potential programmed reaction (CPPR) method coupled with in situ XRD. In this paper, a series of phase transitions occurring during the processes is shown, and a detailed analysis of the phase composition and the structure of the material is given. The influence of a variable nitriding potential on the lattice parameters of α-Fe, γ′-Fe4N, and ε-Fe3-2N phases is shown. The α phase interplanar space changes irrelevantly in the one phase area but decreases linearly with average increases in crystallite size when α→γ′ transformation occurs. The nanocrystallite size distributions (nCSDs) were determined, with nCSD of the α phase for nitriding and nCSD of the ε phase for reduction. The reduction of the ε phase can occur directly to α or indirectly with an intermediate step of γ′ formation as a result of ε→γ′→α transformations. The determining factor in the reducing process method is the volume of ε phase nanocrystallites. Those with V < 90,000 nm3 undergo direct transformation ε→αFe(N), and V > 90,000 nm3 transforms to αFe(N) indirectly. It was determined at what value of nitriding potential which fraction of the ε phase nanocrystallites starts to reduce


Sign in / Sign up

Export Citation Format

Share Document