Experimental Determination of the Deliquescence Relative Humidity and Conductivity of Multicomponent Salt Mixtures

2002 ◽  
Vol 713 ◽  
Author(s):  
Lietai Yang ◽  
Roberto T. Pabalan ◽  
Lauren Browning

ABSTRACTThe conductivity of hygroscopic salt deposits containing Na+, K+, NO3– and Cl– ions was measured in air as a function of relative humidity at constant temperatures. The deliquescence relative humidity (DRH) of multicomponent salts containing Na+, K+, NO3– and Cl– was also determined experimentally. The results of the conductivity experiments show that the conductivity of initially dry salt deposits start to increase after reaching a relative humidity value that is 15 to 20% lower than the DRH of the salt. When the DRH is reached, the conductivity increases dramatically as the salt dissolves and transforms into a saturated aqueous phase. The increase in conductivity at humidities below the DRH is attributed to the adsorption of water on the surface of the salt particles. Because of the increase in conductivity, the initiation of aqueous corrosion of metals in contact with hygroscopic salts may occur at a relative humidity much lower than the DRH of the salt. Thus, the onset of aqueous corrosion of metallic nuclear waste package and the drip shield may be earlier, the duration may be longer, and the temperature at which it occurs may be higher than assumed based on the DRH of the salt. The results of the DRH experiments show that the DRH of a salt mixture is usually significantly lower than that of any of its component pure salt.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ata Ur Rehman ◽  
Muhammad Zahir Shah ◽  
Shehla Rasheed ◽  
Wasim Afzal ◽  
Muhammad Arsalan ◽  
...  

Abstract Salt hydrates (MgSO4 and ZnSO4) impregnated in zeolites, offer a variety of improvements, mostly providing a large surface area for salt hydrates and water molecules. A composite of 5 and 10% of salt contents were prepared as heat storage materials. The study’s finding showed that dehydration enthalpy of MgSO4 (1817 J g−1) and ZnSO4 (1586 J g−1) were 10 and 15% improved than pure salt hydrates by making composites. During the hydration process of composites, the water sorption is 30–37% improved and further the increasing of salt contents in composites enhances more 10% increase in the water resorption. The cyclicability of MgSO4/zeolite and ZnSO4/zeolite were 45 and 51% improved than their corresponding pure salt hydrates. The effect of humidity on the water sorption result reveals that composites of MgSO4/zeolite and ZnSO4/zeolite at 75% relative humidity (RH), the mass of water are 51 and 40% increase than 55% RH.


1985 ◽  
Vol 6 (4) ◽  
pp. 315-330 ◽  
Author(s):  
R. Tufeu ◽  
J. P. Petitet ◽  
L. Denielou ◽  
B. Le Neindre

2020 ◽  
Vol 62 (10) ◽  
pp. 1033-1040
Author(s):  
Christoph Strangfeld ◽  
Sabine Kruschwitz

Abstract The moisture content of the subfloor has to be determined before installation to avoid damage to the floor covering. Only if readiness for layering is reached, can an installation without damage be expected in all cases. In general, three approaches exist to measure residual water content: determination of moisture content, determination of water release, or determination of the corresponding relative humidity. All three approaches are tested under laboratory conditions at eight screed types including two samples thicknesses in each case. Moisture content and water release are measured by sample weighing, the corresponding relative humidity is measured by embedded sensors. All three approaches are compared and correlated. The evaluations show only a weak correlation and, in several cases, contradicting results. Samples are considered ready for layering and not ready for layering at the same time, depending on the chosen approach. Due to these contradicting results, a general threshold for a risk of damage cannot be derived based on these measurements. Furthermore, the experiment demonstrates that the measurement of corresponding relative humidity is independent of the screed type or screed composition considered. This makes humidity measurement a potentially very promising approach for the installation of material moisture monitoring systems.


2001 ◽  
Author(s):  
J. H. Lau ◽  
C. L. Jiaa ◽  
S. J. Erasmus

Abstract The corrosion responses of a fiber-optic transceiver’s housing with zinc alloy die casting material are investigated in this study. Emphasis is placed on the determination of the weight change and corrosion rate of the housing when it is subjected to a 85% relative humidity and 85°C temperature (85%RH/85°C) test condition. Also, the average light optical power, receiver sensitivity, extinction ratio, and mask margin of transceiver modules subjected to 85%RH/85°C and 3.47V at 500, 1000, 1500, and 1600 hours are provided. Furthermore, metallography is performed on the surfaces and cross sections of the housing. Finally, measurements are made of the thickness of the oxide layer on the surfaces of the fiber-optic transceiver housing.


Sign in / Sign up

Export Citation Format

Share Document