Dislocation reduction with quantum dots in GaN grown on sapphire substrates by molecular beam epitaxy

2002 ◽  
Vol 722 ◽  
Author(s):  
David J. Smith ◽  
Daming Huang ◽  
Michael A Reshchikov ◽  
Feng Yun ◽  
T. King ◽  
...  

AbstractWe have investigated a novel approach for improving GaN crystal quality by utilizing a stack of quantum dots (QDs) in GaN grown on sapphire substrates by molecular beam epitaxy. The GaN films were grown on GaN/AlN buffer layers containing multiple QDs and characterized using x-ray diffraction, photoluminescence, atomic force microscopy, and transmission electron microscopy. The density of the dislocations in the films was determined by defect delineation wet chemical etching and atomic force microscopy. It was found that the insertion of a set of multiple GaN QD layers in the buffer layer effectively reduced the density of the dislocations in the epitaxial layers. As compared to a density of ∼1010cm-2in typical GaN films grown on AlN buffer layers, a density of ∼3×107cm-2was demonstrated in GaN films grown with the QD layers. Transmission electron microscopy observations confirmed termination of threading dislocations by the QD layers.

2015 ◽  
Vol 1792 ◽  
Author(s):  
Mourad Benamara ◽  
Yuriy I. Mazur ◽  
Peter Lytvyn ◽  
Morgan E. Ware ◽  
Vitaliy Dorogan ◽  
...  

ABSTRACTThe influence of the substrate temperature on the morphology and ordering of InGaAs quantum dots (QD), grown on GaAs (001) wafers by Molecular Beam Epitaxy (MBE) under As2 flux has been studied using Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and Photoluminescence (PL) measurements. The experimental results show that lateral and vertical orderings occur for temperatures greater than 520°C and that QDs self-organize in a 6-fold symmetry network on (001) surface for T=555°C. Vertical orderings of asymmetric QDs, along directions a few degrees off [001], are observed on a large scale and their formation is discussed.


1995 ◽  
Vol 378 ◽  
Author(s):  
G. Kissinger ◽  
T. Morgenstern ◽  
G. Morgenstern ◽  
H. B. Erzgräber ◽  
H. Richter

AbstractStepwise equilibrated graded GexSii-x (x≤0.2) buffers with threading dislocation densities between 102 and 103 cm−2 on the whole area of 4 inch silicon wafers were grown and studied by transmission electron microscopy, defect etching, atomic force microscopy and photoluminescence spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document